The Pure and Applied Mathematics 2 (1995), No 2, pp. 141-148 J. Korea Soc. of Math. Edu. (Series B) ## THE EXTENSION OF THE SUFFICIENT CONDITION FOR UNIVALENCE JONG SU AN ## 1. Introduction In this paper we shall consider function p(z) analytic in the open unit circle D and the solutions y(z) of the differential equation $$y''(z) + p(z)y(z) = 0. (1.1)$$ The ratio f(z) = u(z)/v(z) of any two independent solutions u(z) and v(z) of (1.1) will be function f(z), meromorphic in D with only simple poles, and such that $f'(z) \neq 0$. We shall say that a meromorphic function which satisfies these two condition belongs to the restricted class. The Schwarzian derivative of f(z), $$S_f(z) = \varphi'(z) - \frac{1}{2}\varphi_f^2(z), \ \varphi_f(z) = f''(z)/f'(z)$$ is connected with p(z) by $$S_f(z) = 2p(z). (1.2)$$ We know that f(z) is univalent in D if no solution of (1.1) has more than one zero in D. Conversely, every univalent function f(z) in D can be written as the ratio of two independent solutions of the (1.1) where p(z) is defined by (1.2). These connections were first stated by Nehari in [1]. Typeset by AMS-TFX ## 2. A bound for the Euclidean distance It is known that the existence of a common positive lower bound for the non-Euclidean distance of two zeros is equivalent to the assumption $$p(z) = 0 \left(1/(1 - |z|^2)^2 \right).$$ Clearly, conditions on p(z) which ensure similarly the existence of a common bound for the Euclidean distance must be restrigent. Lemma 1. For $0 < \rho \le t \le a < 1, \rho < a$, We have $$\frac{1}{1-t^2} < \frac{a-\rho}{a+\rho} \frac{2}{(a-\rho)^2 - (t-\rho)^2}.$$ (2.1) *Proof.* For a = t, the right hand side become infinite so that we may assume $0 < \rho \le t < a < 1$. Since $a^2 - t^2 < 1 - t^2$ it will suffice to show that $$\frac{1}{a^2 - t^2} \le \frac{2(a - \rho)}{(a + \rho)[(a - \rho)^2 - (t - \rho)^2]} = \frac{2(a - \rho)}{(a + \rho)(a + t - 2\rho)(a - t)},$$ i.e., that $$\frac{1}{a+t} \le \frac{2(a-\rho)}{(a+\rho)(a+t-2\rho)}.$$ This inequality is equivalent to $$(a+\rho)(a+t-2\rho) \le 2(a-\rho)(a+t),$$ which by computing, we have $$(a - \rho)^2 + \rho^2 + a\rho + at - 3\rho t \ge 0.$$ To prove the last inequality it will be enough to show that, for fixed ρ and a (0 < ρ < a < 1) and for all t, $\rho \le t \le a$, the function $$f(t) = \rho^2 + a\rho + at - 3\rho t$$ is positive. However, f(t) is positive at the endpoints of the interval $[\rho, a]$ and positive inside the interval. Thus (2.1) is proved. This completes the proof. \Box Theorem 2. Let p(z) be analytic in |z| < 1, and set $$M(t) = Max\{|p(z)| : |z| = t \text{ and } 0 \le t < 1\}.$$ Assume that $$(1 - t^2)M(t) \le 1 \text{ for } r \le t < 1, \ 0 < r < 1.$$ (2.2) let y(z) be any nontrivial solution of (1.1) and assume that $y(z_1) = y(z_2) = 0$, $z_1 \neq z_2$, $|z_1| < 1$, $|z_2| < 1$. Then $$|z_1 - z_2| \ge 2\sqrt{1 - r^2}.$$ *Proof.* We assume that there exists a solution y(z) of (1.1) such that $$|z_1 - z_2| = \delta < 2\sqrt{1 - r^2} = d. \tag{2.3}$$ Multiplying (1.1) by $\overline{y}dz$ and integrating by parts from z_1 to z_2 along a path in D we obtain $$[\overline{y}y']_{z_1}^{z_2} - \int_{z_1}^{z_2} |y'|^2 \overline{dz} + \int_{z_1}^{z_2} p|y|^2 dz = 0.$$ Using now $y(z_1) = y(z_2) = 0$ and choosing as path the segement $[z_1, z_2]$ (whose length element we denote the $d\sigma$) we obtain $$\int_{z_1}^{z_2} |y'|^2 d\sigma \le \int_{z_1}^{z_2} |p||y|^2 d\sigma. \tag{2.4}$$ We shall reach the desired contradiction by three consecutive transformations of this inequality. [First transformation] Choose a, 0 < a < 1, such that $|z_1| < a$, $|z_2| < a$ and such that, setting $\rho = \sqrt{a^2 - \delta^2/4}$, by (2.3) we have $$r < \rho. \tag{2.5}$$ We moved the segement $[z_1, z_2]$ in a way that it became a chord in |z| = a and it is obvious that during this motion the distance of each point from z = 0 increased. The distance of this chord from the origin is ρ . If we denote the length coordinate of the chord, measured from it centre, by $s(-\sqrt{a^2 - \rho^2} \le s \le \sqrt{a^2 - \rho^2})$, then the distance of the point with the coordinate s from z = 0 will be $\sqrt{\rho^2 + s^2}$. We define $y_1(s)$ on the chord by giving that function the same values which y(z) took at the corresponding points of the segement $[z_1, z_2]$; similarly we define $p_1(s)$ by the values of p(z) on $[z_1, z_2]$. $y_1(s)$ is therefore analytic for $-\sqrt{a^2 - \rho^2} \le \sqrt{a^2 - \rho^2}$ and $y_1(\pm \sqrt{a^2 - \rho^2}) = 0$. As M(t) is, by the maximum principle, a non-decreasing function of t, it follows from the above remark about the increasing distance from the origion that $$|p_1(s)| \le M(\sqrt{\rho^2 + s^2}), \qquad 0 \le \pm s \le \sqrt{a^2 - \rho^2}.$$ (2.4) implies therefore $$\int_{-\sqrt{a^2 - \rho^2}}^{\sqrt{a^2 - \rho^2}} \left| \frac{dy_1}{ds} \right|^2 ds \le \int_{-\sqrt{a^2 - \rho^2}}^{\sqrt{a^2 - \rho^2}} M(\sqrt{\rho^2 + s^2}) |y_1(s)|^2 ds. \tag{2.6}$$ [Second transformation] We maps $0 \le s \le \sqrt{a^2 - \rho^2}$ onto $\rho \le t \le a$ and $-\sqrt{a^2 - \rho^2} \le s \le 0$ onto $-a \le t \le -\rho$. These transformations are given by $$t = \pm \rho + \frac{a - \rho}{\sqrt{a^2 - \rho^2}} s \text{ for } 0 \le \pm s \le \sqrt{a^2 - \rho^2}.$$ (2.7) It is easily seen that $$\sqrt{\rho^2 + s^2} \le \rho \pm \frac{a - \rho}{\sqrt{a^2 - \rho^2}} s \text{ for } 0 \le \pm s \le \sqrt{a^2 - \rho^2}, \ 0 < \rho < a,$$ where the equality holds only for $s=0,\pm\sqrt{a^2-\rho^2}$. By (2.7) this shows that under this second transformation the distance of each point from the origin again increases, except for the points $s=0,\pm\sqrt{a^2-\rho^2}$ whose distance remains constant. The function Y(t) defined by $$Y(t) = Y\left(\pm \rho + \frac{a - \rho}{\sqrt{a^2 - \rho^2}}s\right) = y_1(s)$$ will thus have the following properties; - (1) Y(t) is analytic on the segments $-a \le t \le -\rho$ and $\rho \le t \le a$ - (2) Y(a) = Y(-a) = 0 - (3) Y(t) and all its derivative take the same values at $t = \rho$ and $t = -\rho$. Defining $$M(t) = M(-t)$$ for $-1 < t < 0$, (2.8) and observing that the distance from the origin do not decrease under this second transformation, we obtain from (2.6) $$\int_{-a}^{-\rho} \left| \frac{dY}{dt} \right|^2 dt + \int_{\rho}^{a} \left| \frac{dY}{dt} \right|^2 dt \le \frac{a+\rho}{a-\rho} \left\{ \int_{-a}^{-\rho} M(t) |Y(t)|^2 dt + \int_{\rho}^{a} M(t) |Y(t)|^2 dt \right\}. \tag{2.9}$$ By our assumption (2.2), and in view of (2.5) and (2.8), it follows that $$(1-t^2)M(t) \le 1$$ for $\rho \le \pm t \le a$. (2.10) (2.9),(2.10) and Lemma 1 yield $$\int_{-a}^{-\rho} \left| \frac{dY}{dt} \right|^2 dt + \int_{\rho}^{a} \left| \frac{dY}{dt} \right| < \int_{-a}^{-\rho} g(t) |Y(t)|^2 dt + \int_{\rho}^{a} g(t) |Y(t)|^2 dt, \qquad (2.11)$$ where $$g(t) = \frac{2}{(a-\rho)^2 - (t \mp \rho)^2} \qquad \rho \le \pm t \le a.$$ [Third transformation] We translate the two segement $[-a, -\rho]$ and $[\rho, a]$ of the real axis until they meet at the origin, i.e., we introduce the variable x by $x = t \mp \rho$ for $\rho \le \pm t \le a$. With the notation $a - \rho = b$, it follows that x varies between -b and b. Definding now $g_1(x) = g_1(t \mp \rho) = g(t)$, we have $(b^2 - x^2)g_1(x) = 2, -b \le x \le b$. Similarly, we define $Y_1(x) = Y_1(t \mp \rho) = Y(t)$ and it follows that $Y_1(x)$ is analytic for $-b \le x \le b$ and $Y_1(\pm b) = 0$. (2.11) transforms into $$\int_{-b}^{b} \left| \frac{dY_1}{dx} \right|^2 dx < 2 \int_{-b}^{b} \frac{|Y_1(x)|^2}{b^2 - x^2} dx. \tag{2.12}$$ We use the integral inequality $$2\int_{-b}^{b} \frac{u^2}{b^2 - x^2} dx \le \int_{-b}^{b} u'^2 dx, \ u = u(x), \tag{2.13}$$ which holds for continuously differentiable real functions u(x) having at $x = \pm b$ zeros of the first order [3,p.193]. (2.13) follows from the semi-definiteness of the integral $$\int_{-b}^{b} \left(u' + \frac{2xu}{b^2 - x^2} \right)^2 dx.$$ Expanding and integrating by parts, we obtain $$\int_{-b}^{b} u'^2 dx + 2 \left. \frac{xu^2}{b^2 - x^2} \right|_{-b}^{b} - 2 \int_{-b}^{b} \frac{(b^2 + x^2)u^2}{(b^2 - x^2)^2} dx + 4 \int_{-b}^{b} \frac{x^2 - u^2}{(b^2 - x^2)^2} dx \ge 0.$$ u being 0(b-x) and 0(b+x) and x=b and x=-b respectively, the integrals exist and the integrated part vanishes, which proves (2.13). Writing now $Y_1(x)=u(x)+iv(x)$ and applying (2.13) to both u(x) and v(x), we obtain the desired contradiction to (2.12). This completes the proof \square We remark that without any modification our proof holds also in the case r = 0. Assumption (2.2) becomes then $$(1-t^2)M(t) \le 1$$ for $0 \le t < 1$. and the conclusion is that no solution y(z) of (1.1) has more than one zero in |z| < 1. But this is clearly a consequence of the sufficient part of Theorem I of [1] and also of a criterion announced by Pokornyi [2], stating that $$(1-t^2)M(t) \le 2$$ for $0 \le t < 1$, (2.14) is sufficient to ensure the same conclusion. In view of the geometrical meanning of d and r (length of chord and its distance from the origin) it seems natural not to change definition (2.3). We have the following statement. Corollary 3. No condition of the form $$(1-t^2)^{\mu}M(t) \le c, \qquad \mu > 1, \ c > 0, \ r \le t < 1,$$ (2.15) is, for all $r (0 \le r < 1)$, sufficient to ensure that $$|z_1 - z_2| \ge d. \tag{2.3}$$ *Proof.* Let $p(z) = c_1, c_1 > c$. The distance d' between neighboring zeros of any solution of (1.1) is then $d' = \pi/\sqrt{c_1}$. (2.15) holds for $r \le t < 1$. where r is given by $(1-r^2)^{\mu} = c/c_1$. The bound d, given by (2.3), becomes $$d = 2\sqrt{1 - r^2} = 2\sqrt{(c/c_1)^{1/\mu}}.$$ As $\mu > 1$, the lower bound d would, for large c_1 , be larger than the actual distance d' and we have proved the above statement \square Remark. We mentioned that f = 0, condition (2.14) is sharp. It follows that in Theorem 2, (2.2) cannot be replaced by a condition of the form $$(1-t^2)M(t) \le c$$, $r \le t < 1$, $0 \le r < 1$, with $c > 2$. ## REFERENCES - 1. Z. Nehari, The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc. 55 (1949), 39-54. - 2. _____, Univalence criteria on the Schwarzian derivative, Illinois J. Math. 23 (1979), 345-351. - 3. G.H. Hardy, J.E. Littlewood, and G. Polya, Inequalites, Cambridge, 1952. - 4. V.Pokornyi, On some sufficient conditions for univalence, Doklady Akademii Nauk SSSR (N.S.). 79 (1951), 743-746. - 5. F.W. Gehring and Ch. Pommerenke, On the Nehari univalent criterion and quasicircles, Comment Math. 59 (1984), 226-242. Department of Mathematics Education, College of Education, Pusan National University, Pusan 609-735, Korea