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THE EXTENSION OF THE SUFFICIENT
CONDITION FOR UNIVALENCE

JONG Su AN

1. Introduction

In this paper we shall consider function p(z) analytic in the open unit circle D and

the solutions y(z) of the differential equation

y"(2) + p(2)y(2) = 0. (1.1)

The ratio f(z) = u(z)/v(z) of any two independent solutions u(z) and v(z) of
(1.1) will be function f(z), meromorphic in D with only simple poles, and such
that f'(z) # 0. We shall say that a meromorphic function which satisfies these two

condition belongs to the restricted class. The Schwarzian derivative of f(z),

$1(2) = @'(2) = 39%2), o4(2) = (/£ (2)
is connected with p(z) by
$1(2) = 2p(=). (1.2)

We know that f(z) is univalent in D if no solution of (1.1) has more than one zero in
D. Conversely, every univalent function f(z) in D can be written as the ratio of two
independent solutions of the (1.1) where p(z) is defined by (1.2). These connections
were first stated by Nehari in [1].
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2. A bound for the Euclidean distance

It 1s known that the existence of a common positive lower bound for the non-

Euclidean distance of two zeros is equivalent to the assumption

p(z) =0 (1/(1 - 2]*)?).
Clearly, conditions on p(z) which ensure similarly the existence of a common bound
for the Euclidean distance must be restrigent.
Lemma l. For0< p<t<a<l,p<a, We have

1 <a—p 2
1=t “a+pla—p)t—(t—p)*

(2.1)

Proof. For a = t, the right hand side become infinite so that we may assume

0<p<t<a<l. Sincea? —#? <1 —1? it will suffice to show that

1 2(a ~p) _ 2(a - p)
== (atplla—pP —(t-pP]  @+patt-2p)a—1)

i.e., that

1 < 2(a - p)
a+t~ (a+p)att—2p)

This inequality is equivalent to
(a+p)a+t—2p) <2(a-—p)a+t?),

which by computing, we have

(a—p)* +p*+ap+at—3pt>0.
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To prove the last inequality it will be enough to show that, for fixed p and a (0 <
p<a<1l)andforallt, p<t<a,the function

f@t)=p* +ap+at —3pt

is positive. However, f(t) is positive at the endpoints of the interval [p,a] and
positive inside the interval. Thus (2.1) is proved. This completes the proof. O

Theorem 2. Let p(z) be analyitc in |z| < 1, and set
M(t) = Maz{|p(z)| : |z] =t and 0 < t < 1}.
Assume that
1-t)M@E#)<lforr<t<1,0<r<]l. (2.2)

let y(z) be any nontrivial solution of (1.1) and assume that y(z1) = y(z2) =0, z; #
z9, |z1] < 1,|22| < 1. Then

|z1 - 22] Z 2\/ 1—-r2,
Proof. We assume that there exists a solution y(z) of (1.1) such that

|21—22|=6<2\/1—'I‘2=d. (23)

Multiplying (1.1) by Jdz and integrating by parts from 2z; to z; along a path in D
we obtain 2 "
w1 - [ WPE+ [ pluPas=o.
5 n
Using now y(21) = y(z2) = 0 and choosing as path the segement [z;, z5] (whose

length element we denote the do) we obtain

2 12 2 2
/ ' [Pdo < / Iplly[?do. (2.4)

21
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We shall reach the desired contradiction by three consecutive transformations of
this inequality.
[First transformation] Choose a, 0 < a < 1, such that |z1| < a,|z2| < a and such

that, setting p = y/a? — §2/4, by (2.3) we have
r < p. (2.5)

We moved the segement {21, 22] in a way that it became a chord in |z| = a and it
is obvious that during this motion the distance of each point from z = 0 increased.
The distance of this chord from the origin is p. If we denote the length coordinate
of the chord, measured from it centre, by s(—+/a? — p? < s < 1/a? — p?), then the
distance of the point with the coordinate s from z = 0 will be \/m .

We define y,(s) on the chord by giving that function the same values which y(z)
took at the corresponding points of the segement [z;, z2]; similarly we define p;(s) by
the values of p(z) on [21, 22]. y1(s) is therefore analytic for —v/a2 — p2 < 1/a2 — p?
and y1(++/a2 — p?) = 0. As M(t) is, by the maximum principle, a non-decreasing
function of ¢, it follows from the above remark about the increasing distance from

the origion that

py(s)| < M(VP? + 57),  0<ts < /a2 — 2.

(2.4) implies therefore

Var=e? | gy, |? Vai-p?
/\/_2__2 71%1' dss/ ___M(Vp? + )lyi(s)ds. (2.6)
e W

[Second transformation] We maps 0 < s < (/a2 —p? onto p < t < a and
—v/a? — p? < s <0 onto —a <t < —p. These transformations are given by

s for0 < +s < /a2 — p2. (2.7)

t==xp+

a—p
Va2 —p?
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It is easily seen that

Vet +s2<pt——sfor0<+s<+/a?—p? 0<p<a,
—p

\/a_—

where the equality holds only for s = 0, im . By (2.7) this shows that under
this second transformation the distance of each point from the origin again increases,
except for the points s =0, :i:\/m whose distance remains constant.

The function Y'(¢) defined by

Y#)=Y (:tp + \/%s) =y1(s)

will thus have the following properties;

(1) Y(t) is analytic on the segments —a <t< -—pand p<t<a
(2) Y(a) =Y(-a)=0
(3) Y(t) and all its derivative take the same values at t = p and ¢t = —p.

Defining
M(t) = M(-t) for ~1<t<0, (2.8)

and observing that the distance from the origin do not decrease under this second

transformation, we obtain from (2.6)
/—p
—a

By our assumption (2.2), and in view of (2.5) and (2.8), it follows that

2

dY

2 a
= dt+/
P

dY

dt

at < 2X2 L My ora+ [ M@y,
s st [ T mowora [T opal

a—p
(2.9)

dt

(1-t*)M@#) <1 forp<+tt<a. (2.10)
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(2.9),(2.10) and Lemma 1 yield
—p 2 e
/ dt +/
—a 0
2

where
9(t) = (a—p)2—(tFp)?

[Third transformation] We translate the two segement [—a, —p] and [p, a] of the

dYy

d¥ o< ot ora+ | Ty @R, (211)

dt

—a

pL xt<La.

real axis until they meet at the origin, i.e., we introduce the variable £ by ¢ = t F
pfor p < £t < a. With the notation a—p = b, it follows that z varies between —b and
b. Definding now g¢;(z) = ¢:1(t F p) = ¢(t), we have (b — 22)g;(z) =2,-b< z < b.
Similarly, we define Yi(z) = Y;1(¢ F p) = Y(¢) and it follows that Y1(z) is analytic
for —b < z < b and Y1(£b) = 0. (2.11) transforms into

/_bb d—d};—‘ Cdr < 2/_1 %g_x—z};dx. (2.12)
We use the integral inequality
b ul b 9
2/_b mdw < /_b u'“dz, u=u(z), (2.13)

which holds for continuously differentiable real functions u(z) having at z = +b
zeros of the first order [3,p.193]. (2.13) follows from the semi-definiteness of the

integral
b 2
2zu
!
/—b (u + o —:1:2> dz.

Expanding and integrating by parts, we obtain

b

b (12 2\,,2 b 2 _ .2
_2/ (_b_+_-'f>_udx+4/ T s
-b

b 2
12 Tu
/_b“ dz +2 _s (B2 —a2) oy (BE =g =

B2 — 72




THE EXTENSION OF THE SUFFICIENT CONDITION FOR UNIVALENCE 147

u being 0(b — z) and 0(b + z) and ¢ = b and ¢ = —b respectively, the integrals
exist and the integrated part vanishes, which proves (2.13). Writing now Yi(z) =
u(z) + iv(z) and applying (2.13) to both u(z) and v(x), we obtain the desired
contradiction to (2.12). This completes the proof [J

We remark that without any modification our proof holds also in the case r = 0.

Assumption (2.2) becomes then
Q-tHM@) <1 for0<t< 1.

and the conclusion is that no solution y(z) of (1.1) has more than one zero in |z| < 1.
But this is clearly a consequence of the sufficient part of Theorem I of [1] and also

of a criterion announced by Pokornyi [2], stating that
(1-tHM(t) <2 for0<t <1, (2.14)

is sufficient to ensure the same conclusion. In view of the geometrical meanning of
d and r (length of chord and its distance from the origin) it seems natural not to
change definition (2.3). We have the following statement.

Corollary 3. No condition of the form
(1-t¥M@E)<e, p>1,¢>0, r<t<]l, (2.15)
is, for all r (0 < r < 1), sufficient to ensure that

IZ] — 2'2] 2 d (23)

Proof. Let p(z) = ¢1,¢1 > ¢. The distance d' between neighboring zeros of any
solution of (1.1) is then d' = 7/, /¢;. (2.15) holds for r < t < 1. where r is given by
(1 —r%)* = ¢/c;. The bound d, given by (2.3), becomes

d =212 =2,/(c/c)V /.
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As p > 1, the lower bound d would, for large ¢;, be larger than the actual distance

d' and we have proved the above statement 0O

Remark. We mentioned that f = 0, condition (2.14) is sharp. It follows that in
Theorem 2, (2.2) cannot be replaced by a condition of the form

Q1-tHM(t)<e, r<t<1,0<r<1, withe>2.
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