• Title/Summary/Keyword: meromorphic

Search Result 241, Processing Time 0.024 seconds

NERON SYMBOL ON ${\kappa}-HOLOMORPHIC$ TORUS

  • Sim, Kyung-Ah;Woo, Sung-Sik
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.4
    • /
    • pp.843-854
    • /
    • 2000
  • S. Turner has shown that a Neron symbol can be calculated from the values of K-meromorphic theta functions corresponding to divisors on K-holomorphic torus of strongly diagonal type. Using an isogeny to a K-holomorphic torus of strongly diagonal type, he constructed a Neron symbol on K-holomorphic torus of diagonal type. In this work, we provide a simple formula of the Neron symbol on the Tate curve. And then we construct the Neron symbol on K-holomorphic torus of diagonal or st rongly diagonal type without using isogenies.

  • PDF

ON THE DEFECTS OF HOLOMORPHIC CURVES

  • Yang, Liu;Zhu, Ting
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.5
    • /
    • pp.1195-1204
    • /
    • 2020
  • In this paper we consider the holomorphic curves (or derived holomorphic curves introduced by Toda in [15]) with maximal defect sum in the complex plane. Some well-known theorems on meromorphic functions of finite order with maximal sum of defects are extended to holomorphic curves in projective space.

Weierstrass semigroups at inflection points

  • Kim, Seon-Jeong
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.753-759
    • /
    • 1995
  • Let C be a smooth complex algebraic curve of genus g. For a divisor D on C, dim D means the dimension of the complete linear series $\mid$D$\mid$ containing D, which is the same as the projective dimension of the vector space of meromorphic functions f on C with divisor of poles $(f)_\infty \leq D$.

  • PDF

A NOTE ON THE BRÜCK CONJECTURE

  • Lu, Feng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.5
    • /
    • pp.951-957
    • /
    • 2011
  • In 1996, Br$\ddot{u}$ck studied the relation between f and f' if an entire function f shares one value a CM with its first derivative f' and posed the famous Br$\ddot{u}$ck conjecture. In this work, we generalize the value a in the Br$\ddot{u}$ck conjecture to a small function ${\alpha}$. Meanwhile, we prove that the Br$\ddot{u}$ck conjecture holds for a class of meromorphic functions.

ON FILLING DISCS IN THE STRONG BOREL DIRECTION OF ALGEBROID FUNCTION WITH FINITE ORDER

  • Huo, Yingying;Kong, Yinying
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.6
    • /
    • pp.1213-1224
    • /
    • 2010
  • Using Ahlfors' covering surface method, some properties on the strong Borel direction of algebroid function of finite order are obtained. The main object of this paper is to prove existence theorem of a strong Borel direction and the existence of filling discs in such direction which briefly extends some results of meromorphic function.

ON ZEROS AND GROWTH OF SOLUTIONS OF SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS

  • Kumar, Sanjay;Saini, Manisha
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.229-241
    • /
    • 2020
  • For a second order linear differential equation f" + A(z)f' + B(z)f = 0, with A(z) and B(z) being transcendental entire functions under some restrictions, we have established that all non-trivial solutions are of infinite order. In addition, we have proved that these solutions, with a condition, have exponent of convergence of zeros equal to infinity. Also, we have extended these results to higher order linear differential equations.

ON THE GENERALIZATIONS OF BRÜCK CONJECTURE

  • Banerjee, Abhijit;Chakraborty, Bikash
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.311-327
    • /
    • 2016
  • We obtain similar types of conclusions as that of $Br{\ddot{u}}ck$ [1] for two differential polynomials which in turn radically improve and generalize several existing results. Moreover a number of examples have been exhibited to justify the necessity or sharpness of some conditions used in the paper. At last we pose an open problem for future research.

ON ENTIRE SOLUTIONS OF NONLINEAR DIFFERENCE-DIFFERENTIAL EQUATIONS

  • Wang, Songmin;Li, Sheng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1471-1479
    • /
    • 2013
  • In this paper, we study the non-existence of finite order entire solutions of nonlinear differential-difference of the form $$f^n+Q(z,f)=h$$, where $n{\geq}2$ is an integer, $Q(z,f)$ is a differential-difference polynomial in $f$ with polynomial coefficients, and $h$ is a meromorphic function of order ${\leq}1$.