References
- I. N. Baker, On a class of meromorphic functions, Proc. Amer. Math. Soc. 17 (1966), 819-822. https://doi.org/10.1090/S0002-9939-1966-0197732-X
-
Y. M. Chiang and S. J. Feng, On the Nevanlinna characteristic f(z +
${\eta}$ ) and difference equations in the complex plane, Ramanujan. J. 16 (2008), 105-129. https://doi.org/10.1007/s11139-007-9101-1 -
F. Gross, On the equation
$f^n$ +$g^n$ = 1, Bull. Amer. Math. Soc. 72 (1966), 86-88. https://doi.org/10.1090/S0002-9904-1966-11429-5 -
F. Gross, On the functional equation
$f^n$ +$g^n$ =$h^n$ , Amer. Math. Monthly 73 (1966), 1093-1096. https://doi.org/10.2307/2314644 - G. G. Gundersen, Complex functional equations, in Complex differential and functional equations (Mekrijarvi, 2000), 21-50, Univ. Joensuu Dept. Math. Rep. Ser., 5, Univ. Joensuu, Joensuu, 2003.
- G. G. Gundersen and W. K. Hayman, The strength of Cartan's version of Nevanlinna theory, Bull. London Math. Soc. 36 (2004), no. 4, 433-454. https://doi.org/10.1112/S0024609304003418
- R. G. Halburd and R. J. Korhonen, Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn. Math. 31 (2006), no. 2, 463-478.
- R. Halburd, R. Korhonen, and K. Tohge, Holomorphic curves with shift-invariant hyperplane preimages, Trans. Amer. Math. Soc. 366 (2014), no. 8, 4267-4298. https://doi.org/10.1090/S0002-9947-2014-05949-7
- K. Ishizaki and R. Korhonen, Meromorphic solutions of algebraic difference equations, Constr Approx (2017); https://doi.org/10.1007/s00365-017-9401-7.
- D.-I. Kim, Waring's problem for linear polynomials and Laurent polynomials, Rocky Mountain J. Math. 35 (2005), no. 5, 1533-1553. https://doi.org/10.1216/rmjm/1181069650
- R. Korhonen and Y. Y. Zhang, Existence of meromorphic solutions of first order difference equations, arXiv:1708.07647.
- I. Lahiri and K.-W. Yu, On generalized Fermat type functional equations, Comput. Methods Funct. Theory 7 (2007), no. 1, 141-149. https://doi.org/10.1007/BF03321637
- N. Li, On the existence of solutions of a Fermat-type difference equation, Ann. Acad. Sci. Fenn. Math. 41 (2016), no. 2, 523-549. https://doi.org/10.5186/aasfm.2016.4131
- P. Li and C.-C. Yang, Some further results on the unique range sets of meromorphic functions, Kodai Math. J. 18 (1995), no. 3, 437-450. https://doi.org/10.2996/kmj/1138043482
- K. Liu, Meromorphic functions sharing a set with applications to difference equations, J. Math. Anal. Appl. 359 (2009), no. 1, 384-393. https://doi.org/10.1016/j.jmaa.2009.05.061
- K. Liu, T. Cao, and H. Cao, Entire solutions of Fermat type differential-difference equations, Arch. Math. (Basel) 99 (2012), no. 2, 147-155. https://doi.org/10.1007/s00013-012-0408-9
- K. Liu and L. Yang, On entire solutions of some differential-difference equations, Comput. Methods Funct. Theory 13 (2013), no. 3, 433-447. https://doi.org/10.1007/s40315-013-0030-2
- K. Liu and L. Z. Yang, A note on meromorphic solutions of Fermat types equations, An. Stiint. Univ. Al. I. Cuza Iasi Mat. (N.S.) 1 (2016), 317-325.
-
F. Lu and Q. Han, On the Fermat-type equation
$f^3(z)$ +$f^3(z+c)$ = 1, Aequationes Math. 91 (2017), no. 1, 129-136. https://doi.org/10.1007/s00010-016-0443-x - P. Montel, Lecons sur les familles normales de fonctions analytiques at leurs applications, Gauthier-Villars, Paris, (1927), 135-136 (French).
- T. W. Ng and S. K. Yeung, Entire holomorphic curves on a Fermat surface of low degree, arXiv:1612.01290 (2016).
-
N. Toda, On the functional equation
${\Sigma}_{i=0}^pa_if^{n_i}_i$ = 1, Tohoku Math. J. (2) 23 (1971), 289-299. https://doi.org/10.2748/tmj/1178242646 - C.-C. Yang and P. Li, On the transcendental solutions of a certain type of nonlinear differential equations, Arch. Math. (Basel) 82 (2004), no. 5, 442-448. https://doi.org/10.1007/s00013-003-4796-8
- C.-C. Yang and H.-X. Yi, Uniqueness Theory of Meromorphic Functions, Mathematics and its Applications, 557, Kluwer Academic Publishers Group, Dordrecht, 2003.
- K.-W. Yu and C.-C. Yang, A note for Waring's type of equations for the ring of meromorphic functions, Indian J. Pure Appl. Math. 33 (2002), no. 10, 1495-1502.
- J. Zhang, On some special difference equations of Malmquist type, Bull. Korean. Math. Soc. 55 (2018), no. 1, 51-61. https://doi.org/10.4134/BKMS.B160844