• Title/Summary/Keyword: meromorphic

Search Result 241, Processing Time 0.027 seconds

NEW SUBCLASS OF MEROMORPHIC MULTIVALENT FUNCTIONS ASSOCIATED WITH HYPERGEOMETRIC FUNCTION

  • Khadr, Mohamed A.;Ali, Ahmed M.;Ghanim, F.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.3
    • /
    • pp.553-563
    • /
    • 2021
  • As hypergeometric meromorphic multivalent functions of the form $$L^{t,{\rho}}_{{\varpi},{\sigma}}f(\zeta)=\frac{1}{{\zeta}^{\rho}}+{\sum\limits_{{\kappa}=0}^{\infty}}{\frac{(\varpi)_{{\kappa}+2}}{{(\sigma)_{{\kappa}+2}}}}\;{\cdot}\;{\frac{({\rho}-({\kappa}+2{\rho})t)}{{\rho}}}{\alpha}_{\kappa}+_{\rho}{\zeta}^{{\kappa}+{\rho}}$$ contains a new subclass in the punctured unit disk ${\sum_{{\varpi},{\sigma}}^{S,D}}(t,{\kappa},{\rho})$ for -1 ≤ D < S ≤ 1, this paper aims to determine sufficient conditions, distortion properties and radii of starlikeness and convexity for functions in the subclass $L^{t,{\rho}}_{{\varpi},{\sigma}}f(\zeta)$.

UNIQUENESS OF MEROMORPHIC FUNCTION WITH ITS LINEAR DIFFERENTIAL POLYNOMIAL SHARING TWO VALUES

  • Banerjee, Abhijit;Maity, Sayantan
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.3
    • /
    • pp.515-526
    • /
    • 2021
  • The paper has been devoted to study the uniqueness problem of meromorphic function and its linear differential polynomial sharing two values. We have pointed out gaps in one of the theorem due to [1]. We have further extended the corrected form of Chen-Li-Li's result which in turn extend the an earlier result of [8] in a large extent. In fact, we have subtly use the notion of weighted sharing of values in this particular section of literature which was unexplored till now. A handful number of examples have been provided by us pertinent to different discussions. Specially we have given an example to show that one condition in a theorem can not be dropped.

UNIQUENESS OF MEROMORPHIC SOLUTIONS OF A CERTAIN TYPE OF DIFFERENCE EQUATIONS

  • Chen, Jun-Fan;Lin, Shu-Qing
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.4
    • /
    • pp.827-841
    • /
    • 2022
  • In this paper, we study the uniqueness of two finite order transcendental meromorphic solutions f(z) and g(z) of the following complex difference equation A1(z)f(z + 1) + A0(z)f(z) = F(z)e𝛼(z) when they share 0, ∞ CM, where A1(z), A0(z), F(z) are non-zero polynomials, 𝛼(z) is a polynomial. Our result generalizes and complements some known results given recently by Cui and Chen, Li and Chen. Examples for the precision of our result are also supplied.

ORDER, TYPE AND ZEROS OF ANALYTIC AND MEROMORPHIC FUNCTIONS OF [p, q] - ϕ ORDER IN THE UNIT DISC

  • Pulak Sahoo;Nityagopal Biswas
    • Korean Journal of Mathematics
    • /
    • v.31 no.2
    • /
    • pp.229-242
    • /
    • 2023
  • In this paper, we investigate the [p, q] - φ order and [p, q] - φ type of f1 + f1, ${\frac{f_1}{f_2}}$ and f1 f1, where f1 and f1 are analytic or meromorphic functions with the same [p, q]-φ order and different [p, q]-φ type in the unit disc. Also, we study the [p, q]-φ order and [p, q]-φ type of different f and its derivative. At the end, we investigate the relationship between two different [p, q] - φ convergence exponents of f. We extend some earlier precedent well known results.

UNIQUENESS OF TRANSCENDENTAL MEROMORPHIC FUNCTIONS AND CERTAIN DIFFERENTIAL POLYNOMIALS

  • H.R. JAYARAMA;S.H. NAVEENKUMAR;S. RAJESHWARI;C.N. CHAITHRA
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.4
    • /
    • pp.765-780
    • /
    • 2023
  • In this paper, we explore the uniqueness property between the transcendental meromorphic functions and differential polynomial. With the notion of weighted sharing, we generalised the many previous results on uniqueness property. Here we discussed the uniqueness of [P(f)(αfm + β)s](k) - η(z) and [P(g)(αgm + β)s](k) - η(z). Meanwhile, we generalised the result of Harina P. waghamore and Rajeshwari S[1].

ON DELAY DIFFERENTIAL EQUATIONS WITH MEROMORPHIC SOLUTIONS OF HYPER-ORDER LESS THAN ONE

  • Risto Korhonen;Yan Liu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.1
    • /
    • pp.229-246
    • /
    • 2024
  • We consider the delay differential equations $$b(z)w(z+1)+c(z)w(z-1)+a(z)\frac{w'(z)}{w^k(z)}=\frac{P(z, w(z))}{Q(z, w(z))}$$, where k ∈ {1, 2}, a(z), b(z) ≢ 0, c(z) ≢ 0 are rational functions, and P(z, w(z)) and Q(z, w(z)) are polynomials in w(z) with rational coefficients satisfying certain natural conditions regarding their roots. It is shown that if this equation has a non-rational meromorphic solution w with hyper-order ρ2(w) < 1, then either degw(P) = degw(Q) + 1 ≤ 3 or max{degw(P), degw(Q)} ≤ 1. In addition, it is shown that in the case max{degw(P), degw(Q)} = 0 the equations above can have such a solution, with an additional zero density requirement, only if the coefficients of the equation satisfy certain strict conditions.

UNIQUENESS OF A MEROMORPHIC FUNCTION WITH DIFFERENCE POLYNOMIAL OF DIFFERENCE OPERATOR SHARING TWO VALUES CM

  • H. R. Jayarama;H. Harish;S. H. Naveenkumar;C. N. Chaithra
    • Honam Mathematical Journal
    • /
    • v.46 no.2
    • /
    • pp.267-278
    • /
    • 2024
  • In this paper, we investigate the uniqueness of a meromorphic function f(z) and its difference polynomial of difference operator with two sharing values counting multiplicities. Our two results improve and generalize the recent results of Barki Mahesh, Dyavanal Renukadevi S and Bhoosnurmath Subhas S [4] and for the case q ≥ 2, this allows for a highly unique generalization. To further demonstrate the validity of our main result, we provide an example.

ON THE DYNAMICAL PROPERTIES OF SOME FUNCTIONS

  • Yoo, Seung-Jae
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.15 no.2
    • /
    • pp.47-56
    • /
    • 2003
  • This note is concerned with some properties of fixed points and periodic points. First, we have constructed a generalized continuous function to give a proof for the fact that, as the reverse of the Sharkovsky theorem[16], for a given positive integer n, there exists a continuous function with a period-n point but no period-m points wherem is a predecessor of n in the Sharkovsky ordering. Also we show that the composition of two transcendental meromorphic functions, one of which has at least three poles, has infinitely many fixed points.

  • PDF

UNIQUENESS OF MEROMORPHIC FUNCTIONS CONCERNING DIFFERENTIAL POLYNOMIALS WITH REGARD TO MULTIPLICITY SHARING A SMALL FUNCTION

  • WAGHAMORE, HARINA P.;ANAND, SANGEETHA
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.5_6
    • /
    • pp.529-542
    • /
    • 2017
  • In this paper, using the notion of weakly weighted sharing and relaxed weighted sharing, we investigate the uniqueness problems of certain differential polynomials sharing a small function. The results obtained in this paper extend the theorem obtained by Jianren Long [9].