• 제목/요약/키워드: memory interface

검색결과 509건 처리시간 0.031초

비휘발 메모리소자응용을 위한 강유전체 $LiNbO_3$ 박막의 전기적 구조적 특성에 관한 연구 (Electrical and Structural Properties of Ferroelectric $LiNbO_3$ Thin films for Nonvolatile Memory applications)

  • 최유신;정세민;김도영;이준신
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 춘계학술대회 논문집
    • /
    • pp.235-238
    • /
    • 1998
  • Ferroelectric $LiNbO_3$ thin films were grown directly on Si(100) substrates by 13.55MHz RF magnetron sputtering system using a ceramic target ($Nb_2O_5/Li_2C0_3$ = 51.4/48.6). Because high temperature process have to avoided to prevent degradation of the interface (insulator/Si), $LiNbO_3$ thin films were deposited below $300^{\circ}C$. After as-deposited films were performed RTA treatments in an oxygen ambient at $600^{\circ}C$ for 60s, electrical measurements performed films before and after anneal treatment. In high field region, the leakage current density of the films after annealing was deceased about 4order and the resistivity of these was increased to about 5\times 10^{11} \Omega \cdot cm$ at 500kV/cm. In accumulation region of C-V curve, we calculated dielectric constant of thin film $LiNbO_3$ as 27.9 which is close to that of bulk value.

  • PDF

Design of Main Computer Board for MSC on KOMPSAT-2

  • Heo, H.P.;Kong, J.P.;Yong, S.S.;Kim, Y.S.;Park, J.E.;Youn, H.S.;Paik, H.Y.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.1096-1098
    • /
    • 2003
  • SBC(Single Board Computer) is being developed for MSC(Multi-Spectral Camera) on KOMPSAT-2(Korea Multi-Purpose Satellite). SBC controls all the units of MSC system and gets commands and sends telemetry to and from spacecraft bus via 1553 communication channel. Due to the fact that SBC does very important roles for MSC system operation and SBC operates with 100% duty cycle, SBC is designed to have high reliability. SBC which has Intel 80486 as a main processor includes eight serial communication channels, one mil-std-1553 interface channel and several discrete interfaces. SBC incorporates 2Mbyte radiation hardened SRAM(Static Random Access Memory) and 1Mbyte flash memory. There are also PIC(Programmable Interrupt Controller), counter, WDT(Watch Dog Timer) in the SBC. In this paper, the design result of the SBC is presented.

  • PDF

자기정렬구조를 갖는 칼코겐화물 상변화 메모리 소자의 전기적 특성 및 온도 분포 (Electrical Characteristics of and Temperature Distribution in Chalcogenide Phase Change Memory Devices Having a Self-Aligned Structure)

  • 윤혜련;박영삼;이승윤
    • 한국전기전자재료학회논문지
    • /
    • 제32권6호
    • /
    • pp.448-453
    • /
    • 2019
  • This work reports the electrical characteristics of and temperature distribution in chalcogenide phase change memory (PCM) devices that have a self-aligned structure. GST (Ge-Sb-Te) chalcogenide alloy films were formed in a self-aligned manner by interdiffusion between sputter-deposited Ge and $Sb_2Te_3$ films during thermal annealing. A transmission electron microscopy-energy dispersive X-ray spectroscopy (TEM-EDS) analysis demonstrated that the local composition of the GST alloy differed significantly and that a $Ge_2Sb_2Te_5$ intermediate layer was formed near the $Ge/Sb_2Te_3$ interface. The programming current and threshold switching voltage of the PCM device were much smaller than those of a control device; this implies that a phase transition occurred only in the $Ge_2Sb_2Te_5$ intermediate layer and not in the entire thickness of the GST alloy. It was confirmed by computer simulation, that the localized phase transition and heat loss suppression of the GST alloy promoted a temperature rise in the PCM device.

마이크로프로세서를 이용한 자기카메라 전용 임베디드형 AD 변환기 및 잡음 감소에 관한 연구 (A Study of the Exclusive Embedded A/D Converter Using the Microprocessor and the Noise Decrease for the Magnetic Camera)

  • 이진아;황지성;송하용
    • 비파괴검사학회지
    • /
    • 제26권2호
    • /
    • pp.99-107
    • /
    • 2006
  • 자기적인 방법을 이용한 비파괴검사는 강자성체 표면 및 표면 근방의 균열을 탐상하는데 매우 유용하다. 균열을 평가하기 위해서는 시험편상의 누설자속분포를 정량적으로 취득해야 한다. 자기카메라는 큰 리프트오프에서 누설자속분포를 얻기 위하여 제안되었다. 자기카메라는 지원, 자기렌즈, AD 변환기, 인터페이스 및 컴퓨터로 구성되어 있다. 측정 대상체로부터 누설된 자속 또는 흐트러진 자장은 지기렌즈로 집속된 후, 배열된 작은 지기센서에 의하여 아날로그신호로 변환된다. 이러한 아날로그 신호는 AD 변환기에 의하여 디지털신호로 변환되고, 인터페이스 및 컴퓨터에 의하여 저장, 영상화 및 처리된다. 그러나, 지급까지의 자기카메라는 범용 AD변환기를 사용하기 때문에 변환 및 스위칭속도, 검출범위 및 분해능, 직접 메모리 액세스(DMA, direct memory access), 임시저장속도 및 저장량에 한계점을 가지고 있었다. 또한, S/N비를 높이기 위하여 OP-AMP의 도입, 신호의 증폭, 배선의 감소, LPF의 사용과 팥은 개선된 기술이 필요하다. 본 논문은 상술한 조건들을 만족하기 위하여 OP-AMP, LPF, 마이크로프로세서 및 DMA 회로를 포함한 자기카메라 전용 임베디드형 AD 변환기를 제안한다.

고유전율 AIN 절연층을 사용한 비휘발성 강유전체 메모리용 MFIS 구조의 제작 및 특성 (Fabrications and Properties of MFIS Structures using high Dielectric AIN Insulating Layers for Nonvolatile Ferroelectric Memory)

  • 정순원;김광희;구경완
    • 대한전자공학회논문지SD
    • /
    • 제38권11호
    • /
    • pp.765-770
    • /
    • 2001
  • 고온 급속 열처리시킨 LiNbO₃/AIN/Si(100) 구조를 이용하여 MFIS 소자를 제작하고, 비휘발성 메모리 동작 가능성을 확인하였다. 고유전율 AIN 박막 위에 Pt 전극을 증착시켜 제작한 MIS 구조에서 측정한 1MHz C-V 특성곡선에서는 히스테리시스가 전혀 없고 양호한 계면특성을 보였으며, 축적 영역으로부터 산출한 비유전율 값은 약 8 이었다. Pt/LiNbO₃/AIN/Si(100) 구조에서 측정한 1MHz C-V 특성의 축적영역에서 산출한 LiNbO₃ 박막의 비유전율 값은 약 23 이었으며, ±5 V의 바이어스 범위 내에서의 메모리 윈도우는 약 1.2 V이었다. 이 MFIS 구조에서의 게이트 누설전류밀도는 ±500 kV/cm의 전계 범위 내에서 10/sup -9/ A/㎠ 범위를 유지하였다. 500 kHz의 바이폴러 펄스를 인가하면서 측정한 피로특성은 10/sup 11/ cycle 까지 초기값을 거의 유지하는 우수한 특성을 보였다.

  • PDF

ZrO2 완충층과 SBT 박막의 열처리 과정이 SrBi2Ta2O9/ZrO2/Si 구조의 계면 상태 및 강유전 특성에 미치는 영향 (The Effect of the Heat Treatment of the ZrO2 Buffer Layer and SBT Thin Film on Interfacial Conditions and Ferroelectric Properties of the SrBi2Ta2O9/ZrO2/Si Structure)

  • 오영훈;박철호;손영구
    • 한국세라믹학회지
    • /
    • 제42권9호
    • /
    • pp.624-630
    • /
    • 2005
  • To investigate the possibility of the $ZrO_2$ buffer layer as the insulator for the Metal-Ferroelectric-Insulator-semiconductor (MFIS) structure, $ZrO_2$ and $SrBi_2Ta_2O_9$ (SBT) thin films were deposited on the P-type Si(111) wafer by the R.F. magnetron-sputtering method. According to the process with and without the post-annealing of the $ZrO_2$ buffer layer and SBT thin film, the diffusion amount of Sr, Bi, Ta elements show slight difference through the Glow Discharge Spectrometer (GDS) analysis. From X-ray Photoelectron Spectroscopy (XPS) results, we could confirm that the post-annealing process affects the chemical binding condition of the interface between the $ZrO_2$ thin film and the Si substrate. Compared to the MFIS structure without the post-annealing of the $ZrO_2$ buffer layer, memory window value of MFlS structure with post-annealing of the $ZrO_2$ buffer layer were considerably improved. The window memory of the Pt/SBT (260 nm, $800^{\circ}C)/ZrO_2$ (20 nm) structure increases from 0.75 to 2.2 V under the applied voltage of 9 V after post-annealing.

TiNi/Al 형상기억 지적복합재료의 기계적 특성 및 강화기구 (Material Properties and Strengthening Mechanism in Shape Memory TiNi Fiber Reinforced Al Matrix composite)

  • 박영철;윤두표;이규창
    • 대한기계학회논문집A
    • /
    • 제21권3호
    • /
    • pp.405-413
    • /
    • 1997
  • In the present paper, it is attempted to reconfirm the "Intelligent" material properties using both the sintered TiNi/Al(1100) matrix composite made by powder metallurgy method and the squeeze-casted TiNi/Al6061 specimens. A metal matrix composite is, its fault has been considered to deteriorate a strength of composite by heating residual stress of the matrix. Therefore, it is necessary to remove a tensile residual stress, to produce the strength of a composite better. On the contrary, if compressive residual stress happens in matrix of composite in place of tensile residual stress, it will make the strength of composite better. So that, this paper introduce the development of a high strength of composite, by using compressive residual stress well, on the study. By using these specimens, shape memory strengthening effects in tensile strength and fatigue crack propagation above inverse transformation temperature of TiNi fiber were investigated. We occurs the prestrain and volume fraction for to discuss the effects of a composite strength. Moreover, by SEM observation, the effect of the residual stress at the interface between Al matrix and TiNi fiber and some brittle precipitation layers such as inter metallic compounds on fracture mechanisms was discussed metallurgically.urgically.

Pillar Type Silicon-Oxide-Nitride-Oxide-Silicon Flash Memory Cells with Modulated Tunneling Oxide

  • Lee, Sang-Youl;Yang, Seung-Dong;Yun, Ho-Jin;Jeong, Kwang-Seok;Kim, Yu-Mi;Kim, Seong-Hyeon;Lee, Hi-Deok;Lee, Ga-Won;Oh, Jae-Sub
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권5호
    • /
    • pp.250-253
    • /
    • 2013
  • In this paper, we fabricated 3D pillar type silicon-oxide-nitride-oxide-silicon (SONOS) devices for high density flash applications. To solve the limitation between erase speed and data retention of the conventional SONOS devices, bandgap-engineered (BE) tunneling oxide of oxide-nitride-oxide configuration is integrated with the 3D structure. In addition, the tunneling oxide is modulated by another method of $N_2$ ion implantation ($N_2$ I/I). The measured data shows that the BE-SONOS device has better electrical characteristics, such as a lower threshold voltage ($V_{\tau}$) of 0.13 V, and a higher $g_{m.max}$ of 18.6 ${\mu}A/V$ and mobility of 27.02 $cm^2/Vs$ than the conventional and $N_2$ I/I SONOS devices. Memory characteristics show that the modulated tunneling oxide devices have fast erase speed. Among the devices, the BE-SONOS device has faster program/erase (P/E) speed, and more stable endurance characteristics, than conventional and $N_2$ I/I devices. From the flicker noise analysis, however, the BE-SONOS device seems to have more interface traps between the tunneling oxide and silicon substrate, which should be considered in designing the process conditions. Finally, 3D structures, such as the pillar type BE-SONOS device, are more suitable for next generation memory devices than other modulated tunneling oxide devices.

핫스팟 접근영역 인식에 기반한 바이너리 코드 역전 기법을 사용한 저전력 IoT MCU 코드 메모리 인터페이스 구조 연구 (Low-Power IoT Microcontroller Code Memory Interface using Binary Code Inversion Technique Based on Hot-Spot Access Region Detection)

  • 박대진
    • 대한임베디드공학회논문지
    • /
    • 제11권2호
    • /
    • pp.97-105
    • /
    • 2016
  • Microcontrollers (MCUs) for endpoint smart sensor devices of internet-of-thing (IoT) are being implemented as system-on-chip (SoC) with on-chip instruction flash memory, in which user firmware is embedded. MCUs directly fetch binary code-based instructions through bit-line sense amplifier (S/A) integrated with on-chip flash memory. The S/A compares bit cell current with reference current to identify which data are programmed. The S/A in reading '0' (erased) cell data consumes a large sink current, which is greater than off-current for '1' (programmed) cell data. The main motivation of our approach is to reduce the number of accesses of erased cells by binary code level transformation. This paper proposes a built-in write/read path architecture using binary code inversion method based on hot-spot region detection of instruction code access to reduce sensing current in S/A. From the profiling result of instruction access patterns, hot-spot region of an original compiled binary code is conditionally inverted with the proposed bit-inversion techniques. The de-inversion hardware only consumes small logic current instead of analog sink current in S/A and it is integrated with the conventional S/A to restore original binary instructions. The proposed techniques are applied to the fully-custom designed MCU with ARM Cortex-M0$^{TM}$ using 0.18um Magnachip Flash-embedded CMOS process and the benefits in terms of power consumption reduction are evaluated for Dhrystone$^{TM}$ benchmark. The profiling environment of instruction code executions is implemented by extending commercial ARM KEIL$^{TM}$ MDK (MCU Development Kit) with our custom-designed access analyzer.

실리콘 기판위에서의 Cr-Doped SrZrO3 박막의 저항변화 특성 (Resistive Switching Properties of Cr-Doped SrZrO3 Thin Film on Si Substrate)

  • 양민규;고태국;박재완;이전국
    • 한국재료학회지
    • /
    • 제20권5호
    • /
    • pp.241-245
    • /
    • 2010
  • One of the weak points of the Cr-doped SZO is that until now, it has only been fabricated on perovskite substrates, whereas NiO-ReRAM devices have already been deposited on Si substrates. The fabrication of RAM devices on Si substrates is important for commercialization because conventional electronics are based mainly on silicon materials. Cr-doped ReRAM will find a wide range of applications in embedded systems or conventional memory device manufacturing processes if it can be fabricated on Si substrates. For application of the commercial memory device, Cr-doped $SrZrO_3$ perovskite thin films were deposited on a $SrRuO_3$ bottom electrode/Si(100)substrate using pulsed laser deposition. XRD peaks corresponding to the (112), (004) and (132) planes of both the SZO and SRO were observed with the highest intensity along the (112) direction. The positions of the SZO grains matched those of the SRO grains. A well-controlled interface between the $SrZrO_3$:Cr perovskite and the $SrRuO_3$ bottom electrode were fabricated, so that good resistive switching behavior was observed with an on/off ratio higher than $10^2$. A pulse test showed the switching behavior of the Pt/$SrZrO_3:Cr/SrRuO^3$ device under a pulse of 10 kHz for $10^4$ cycles. The resistive switching memory devices made of the Cr-doped $SrZrO_3$ thin films deposited on Si substrates are expected to be more compatible with conventional Si-based electronics.