• 제목/요약/키워드: membrane proteins

검색결과 1,006건 처리시간 0.025초

Evolutionary Signature of Information Transfer Complexity in Cellular Membrane Proteomes

  • Kim, Jong-Min;Kim, Byung-Gee;Oh, S.-June
    • Genomics & Informatics
    • /
    • 제7권2호
    • /
    • pp.111-121
    • /
    • 2009
  • Cell membrane proteins play crucial roles in the cell's molecular interaction with its environment and within itself. They consist of membrane-bound proteins and many types of transmembrane (TM) proteins such as receptors, transporters, channel proteins, and enzymes. Membrane proteomes of cellular organisms reveal some characteristics in their global topological distribution according to their evolutionary positions, and show their own information transfer complexity. Predicted transmembrane segments (TMSs) in membrane proteomes with HMMTOP showed near power-law distribution and frequency characteristics in 6-TMS and 7-TMS proteins in prokaryotes and eukaryotes, respectively. This reaffirms the important roles of membrane receptors in cellular communication and biological evolutionary history.

Solid-state NMR Studies of Membrane Proteins Using Phospholipid Bicelles

  • Kim, Yong-Ae
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권3호
    • /
    • pp.386-388
    • /
    • 2006
  • Membrane proteins in highly oriented lipid bilayer samples are useful for membrane protein structure determination. We used in the past planar lipid bilayers which were aligned and supported on the glass slide. These samples were mechanically aligned in a magnetic field. However, these stacks of glass slides with planar lipid bilayers are not well suited for use with a commercial solid-state NMR probe with a round coil. Therefore, a homebuilt solid-state NMR probe was built and used with a stack of thin glass plates wherein the RF coil was wrapped directly around the flat square sample. Recently, we began to use magnetically aligned bicelles that are suitable for the structure determination of membrane proteins by solid-state NMR spectroscopy without any effort to build a flat square coil probe. These bicelle samples are well suited for use with a commercial solidstate NMR probe with a round coil, are very easy to prepare and are very stable, so that they can be kept for more than a year. In this paper, we present the solid-state NMR spectra of optimized and magnetically oriented bicelle samples of membrane proteins.

Effect of Freezing on Proteins and Protein Profiles of Sperm Membrane Extracts and Seminal Plasma of Buffalo Bulls

  • Dhanju, C.K.;Cheema, R.S.;Kaur, S.P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제14권12호
    • /
    • pp.1678-1682
    • /
    • 2001
  • The total proteins were estimated in both deoxycholate (DOC)-extract of sperm membrane and seminal plasma of chilled as well as frozen semen obtained from five Murrah buffalo bulls. Proteins were further characterized by polyacrylamide gel electrophoresis (PAGE) in three bulls. The protein content of sperm membrane extract (SME) and that of seminal plasma (SP) decreased gradually with increase in freezing period from 6 to 24 mo when compared with the values observed in freshly chilled semen in all bulls. The total decrease in protein content of SME and SP varied from 30-40% and 28-59% respectively during 6-24 mo of freezing. The number of glycoproteins/proteins (GP/P) in SME varied from 4-8 in freshly-chilled semen of all bulls and reduced to 2-4 after 24 mo of freezing. In SP, the number of proteins varied from 6-10 in freshly chilled semen of all bulls and reduced to 3-8 after 24 mo of freezing. Some of the proteins in SME and SP disappeared, others got altered and appeared with change in molecular weight after different freezing times. These studies reveal that alterations in the sperm membrane proteins may be responsible for damage to their membrane during freezing and thus lowering their fertilizability.

사람치아 단백질을 분리 흡착한 PVDF막의 생체반응에 관한 연구 (BIOASSAY OF HUMNA TOOTH PROTEIN BLOTTED POLYVINYLIDENE DIFLUORIDE(PVDF)MEMBRANE)

  • 강나라;홍종락;정필훈
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제30권3호
    • /
    • pp.186-192
    • /
    • 2004
  • Purpose: Human tooth proteins are highly heterogeneous, comprising diverse proteins derived from a number of genes. The attempts to identify protein for activity of tooth matrix proteins have been defied by several factors. First, the amount of proteins within teeth is very small relative to many extracellular matrix proteins of other tissues. Second, the bioassay system is tedious and needed for long time. Therefore we tried to find easy techniques, which increase the product rate, and an assay of small proteins, with which amino acid sequence is possible without additional procedures. Materials and Methods: Total protein were extracted from 300 g enamel removed teeth and 600 g teeth with 4 mol/L guanidine HCl and purified by gel chromatography. Aliquot of proteins was implanted into muscle pouches in Sprague-Dawley rats for bioassay. By SDS-PAGE and membrane blotting, molecular weight of each protein was estimated and a partial amino acid sequence was obtained. Each fraction blotted on the membrane was cut out and inserted in rat ectopic model. Results: In dissociative method, total tooth proteins were obtained 1mg/ml from enamel removed teeth and 3.5 mg/ml from teeth. In SDS-PAGE, four clear bands at the sites corresponding to 66, 40, 20 and 18 kD. Especially The 66 kD band was clearly exhibited. Amino acid sequencing from tooth could be possible using PVDF membrane blotting technique. In amino acid sequencing, 66 kD protein was identified as albumin. Conclusion: Compared with conventional method for extraction of teeth protein and bioassay of proteins, the methods in this study were easy, time-saving and more productive technique. The matured tooth proteins omitting additional procedure of mechanical removal of enamel were simply analyzed using blotted PVDF membrane. This method seems to make a contribution as a technique for bioassay and amino acid sequencing of protein.

식이지방이 생체막 구조와 기능에 미치는 영향 (Effect of Dietary Fat on Structure and Function of Mammalian Cell Membrane)

  • 조성희
    • 한국식품영양과학회지
    • /
    • 제13권4호
    • /
    • pp.459-468
    • /
    • 1984
  • The currently accepted model of membrane structure proposes a dynamic, asymmetric lipid matrix of phospholipids and cholesterol with globular proteins embedded across the membrane to various degrees. Most phospholipids are in the bilayer arrangement and also closely associated with integral membrane proteins or loosely associated with peripheral proteins. Biological functions of membrane, such as membrane-bound enzyme functions and transport systems, are influenced by the membrane physical properties, which are determined by fatty acid composition of phospholipids, polar head group composition and membrane cholesterol content. Polar and non-polar region of the phospholipid molecule can interact, with changes in the conformation of a membrane-associated protein altering either its catalytic activity or the protein's interaction with other membrane proteins. Mammalian dietary studies attempted to change the lipid composition of a few cell membranes have shown comparisons, using essential fatty acid-deficient diets. In recent years, Clandinin and a few other workers have pioneered the study proving the influence of dietary fat fed in a nutritionally complete diet on composition of phospholipid classes of cell membrane. Modulation caused by diet fat was rapid and reversible in phospholipid fatty acyl composition of membranes of cardiac mitochondria, liver cell, brain synaptosome and lymphocytes. These changes were at the same time, accompanied by variety of membrane associated functions controlled by membrane-bound enzymes, tranporter and receptor proteins. The findings suggest the basic concept of the necessity of dietary fatty acid balance if consistency of optimal membrane structural lipid composition is to be maintained, as well as the overall inadequacy of describing the nutritional-biochemical quality of a dietary fat solely by its content of linoleic acid. Furthermore, they give light on the possible application to clinical and preventive medicine.

  • PDF

Analysis of Entamoeba histolytica Membrane via LC-MALDI-TOF/TOF

  • Ujang, Jorim Anak;Noordin, Rahmah;Othman, Nurulhasanah
    • Mass Spectrometry Letters
    • /
    • 제10권3호
    • /
    • pp.84-87
    • /
    • 2019
  • Liquid chromatography mass spectrometry is widely employed in proteomics studies. One of such instruments is the Liquid Chromatography (LC)-Matrix-assisted laser desorption ionisation (MALDI)-Time of flight (TOF) or LC-MALDI-TOF/TOF. In this study, this instrument was used to identify the membrane proteins of a protozoan parasite namely Entamoeba histolytica. It causes amoebiasis in human. The E. histolytica trophozoites were cultured prior to the membrane protein extraction using the conventional method, $ProteoPrep^{(R)}$ and $ProteoExtract^{(R)}$ kits. Then, the membrane protein extracts were trypticdigested and analysed by LC-MALDI-TOF/TOF. Approximately, 194 proteins were identified and 27.8% (54) were predicted as membrane proteins having 1 to 15 transmembrane regions and signal peptides by combining all three extraction methods. Also, this study has discovered 3 unique proteins as compared to our previous study which merit further investigation.

질량분석기를 활용한 막 단백질 비교분석: High-speed Centrifuge법과 Reagent-based법 (Mass Spectrometry-based Comparative Analysis of Membrane Protein: High-speed Centrifuge Method Versus Reagent-based Method)

  • 이지영;석애은;박아름;문소라;강희규
    • 대한임상검사과학회지
    • /
    • 제51권1호
    • /
    • pp.78-85
    • /
    • 2019
  • 막 단백질은 심장질환, 암과 같은 우리 주변에서 흔히 발생하는 질병에 관련되어 있다. 이러한 암과 같은 특정한 질환 상태에서, 막 단백질과 관련된 신호 전달의 비정상은 세포분열을 통제하지 못하고 증가시킬 수 있으며 막 단백질의 발현에 변화가 생긴다. 막 단백질은 지질 이중층으로 이루어진 소수성 환경을 가지고 있어 불안정하기 때문에 막 단백질을 추출해서 연구를 수행하는데 어려움이 있다. 이번 연구에서는 최적화된 막 단백질 추출법을 확인하고자 서로 다른 두 가지 추출법의 효율성을 평가하였다. 두 가지 방법으로, high-speed centrifuge법과 reagent법이 비교되었다. 비교 분석결과, 미토콘드리아 내막 단백질 분석에는 high-speed centrifuge법이 효율적이고, 소포체 막 단백질 분석에는 reagent법이 유용함을 확인하였다. 게다가 유전자 온톨로지 소프트웨어를 이용해서 추출된 막 단백질의 기능분석을 진행하였을 때, 유전자 온톨로지는 reagent법에서 소포체 막 단백질에 연관된 반응이 활성화 되는 것을 확인할 수 있었다. 프로세스 네트워크 분석에서, high-speed centrifuge법에서는 하나의 클러스터를 형성화는 반면, reagent법에서는 네 개의 클러스터를 형성하는 것을 시각화하여 확인하였다. 결론적으로, 두 가지 분석법은 서로 다른 하위 막 단백질의 분석에 유용함을 확인할 수 있었다. 이러한 결과를 토대로, 막 단백질을 분석할 때, 표적의 세부 막 단백질을 고려하여 방법론을 선택하는데 도움을 줄 것으로 기대된다.

A simple guide to the structural study on membrane proteins in detergents using solution NMR

  • Sim, Dae-Won;Lee, Yoo-sup;Seo, Min-Duk;Won, Hyung-Sik;Kim, Ji-hun
    • 한국자기공명학회논문지
    • /
    • 제19권3호
    • /
    • pp.137-142
    • /
    • 2015
  • NMR-based structural studies on membrane proteins are appreciated quite challenging due to various reasons, generally including the narrow dispersion of NMR spectra, the severe peak broadening, and the lack of long range NOEs. In spite of the poor biophysical properties, structural studies on membrane proteins have got to go on, considering their functional importance in biological systems. In this review, we provide a simple overview of the techniques generally used in structural studies of membrane proteins by solution NMR, with experimental examples of a helical membrane protein, caveolin 3. Detergent screening is usually employed as the first step and the selection of appropriate detergent is the most important for successful approach to membrane proteins. Various tools can then be applied as specialized NMR techniques in solution that include sample deteuration, amino-acid selective isotope labeling, residual dipolar coupling, and paramagnetic relaxation enhancement.

Characterization of Ubiquitinated Lysosomal Membrane Proteins in Acanthamieba castellanii

  • Oh, Sekyung;Ahn, Tae-In
    • Animal cells and systems
    • /
    • 제4권2호
    • /
    • pp.165-171
    • /
    • 2000
  • Ubiquitinated proteins in lysosomes were characterized by using two monoclonal antibodies (mAbs): LYS8-1, a mAb to lysosomal proteins, and NYA124, a mAb to ubiquitin. LYS8-1 stained lysosome-like vesicles in immunofluorescence microscopy of Amoeba proteus and Acanthamoeba castellanii. In immunoblotting, LYS8-1's antigens (LYS proteins) were detected as 68-kDa and 77-kDa proteins in A. proteus, and as 30-kDa and 39-kDa proteins in A. castellanii. In immunoprecipitation of A. castellanii, at least four distinct LYS proteins, LVS35p, LyS39p, LyS42p, and LYS46p, were detected and accumulated upon inhibition of lysosome functions but not upon that of 26S proteasome functions. They were all found to be ubiquitinated, and were recovered in the lysosome fractions in subcellular fractionation experiments. In chemical fractionation analyses, LYS35p and LYS39p were demonstrated to be peripherally associated with lysosome membrane, while LYS42p and LYS46p tightly bound to the membrane. These results suggest that the LYS proteins become associated to lysosomal membrane upon ubiquitination.

  • PDF

Bioinformatic approaches for the structure and function of membrane proteins

  • Nam, Hyun-Jun;Jeon, Jou-Hyun;Kim, Sang-Uk
    • BMB Reports
    • /
    • 제42권11호
    • /
    • pp.697-704
    • /
    • 2009
  • Membrane proteins play important roles in the biology of the cell, including intercellular communication and molecular transport. Their well-established importance notwithstanding, the high-resolution structures of membrane proteins remain elusive due to difficulties in protein expression, purification and crystallization. Thus, accurate prediction of membrane protein topology can increase the understanding of membrane protein function. Here, we provide a brief review of the diverse computational methods for predicting membrane protein structure and function, including recent progress and essential bioinformatics tools. Our hope is that this review will be instructive to users studying membrane protein biology in their choice of appropriate bioinformatics methods.