DOI QR코드

DOI QR Code

A simple guide to the structural study on membrane proteins in detergents using solution NMR

  • Sim, Dae-Won (Department of Biotechnology, College of Biomedical and Health Science, Konkuk University) ;
  • Lee, Yoo-sup (Department of Biotechnology, College of Biomedical and Health Science, Konkuk University) ;
  • Seo, Min-Duk (Department of Molecular Science and Technology, Ajou University) ;
  • Won, Hyung-Sik (Department of Biotechnology, College of Biomedical and Health Science, Konkuk University) ;
  • Kim, Ji-hun (Department of Biotechnology, College of Biomedical and Health Science, Konkuk University)
  • Received : 2015.08.10
  • Accepted : 2015.11.11
  • Published : 2015.12.20

Abstract

NMR-based structural studies on membrane proteins are appreciated quite challenging due to various reasons, generally including the narrow dispersion of NMR spectra, the severe peak broadening, and the lack of long range NOEs. In spite of the poor biophysical properties, structural studies on membrane proteins have got to go on, considering their functional importance in biological systems. In this review, we provide a simple overview of the techniques generally used in structural studies of membrane proteins by solution NMR, with experimental examples of a helical membrane protein, caveolin 3. Detergent screening is usually employed as the first step and the selection of appropriate detergent is the most important for successful approach to membrane proteins. Various tools can then be applied as specialized NMR techniques in solution that include sample deteuration, amino-acid selective isotope labeling, residual dipolar coupling, and paramagnetic relaxation enhancement.

Keywords

References

  1. M. J. Gorczynski, J. Grembecka, Y. Zhou, Y. Kong, L. Roudaia, M. G. Douvas, M. Newman, I. Bielnicka, G. Baber, T. Corpora, J. Shi, M. Sridharan, R. Lilien, B. R. Donald, N. A. Speck, M.L. Brown, J. H. Bushweller, Chem. Biol. 14, 1186 (2007) https://doi.org/10.1016/j.chembiol.2007.09.006
  2. X. Huang, J. W. Peng, N. A. Speck, J. H. Bushweller, Nat. Struct. Biol. 6, 624 (1999) https://doi.org/10.1038/10670
  3. M. A. Yildirim, K. I. Goh, M. E. Cusick, A. L. Barabasi, M. Vidal Nat. Biotechnol. 25, 1119 (2007) https://doi.org/10.1038/nbt1338
  4. J. P. Overington, B. Al-Lazikani, A. L. Hopkins, Nat. Rev. Drug Discov. 5, 993 (2006) https://doi.org/10.1038/nrd2199
  5. J. Deisenhofer, O Epp, K Miki, R Huber, H Michel, Nature 318, 618 (1985) https://doi.org/10.1038/318618a0
  6. R. S. Prosser, F. Evanics, J. L. Kitevski, M. S. Al-Abdul-Wahid, Biochemistry 45, 8453 (2006) https://doi.org/10.1021/bi060615u
  7. J. M. Gluck, M. Wittlich, S. Feuerstein, S. Hoffmann, D. Willbold, B. W. Koenig. J. Am. Chem. Soc. 131, 12060 (2009) https://doi.org/10.1021/ja904897p
  8. R. Phillips, T. Ursell, P. Wiggins, P. Sens, Nature 459, 379 (2009) https://doi.org/10.1038/nature08147
  9. J. Weigelt, J. Am. Chem. Soc. 120, 12706 (1998)
  10. J. Lipfert, L. Columbus, V. B. Chu, S.A. Lesley, S. Doniach, J. Phys. Chem. B 111, 12427 (2007)
  11. A. Galoyan, R. Srapionian, R. C. Arora, J. A. Armour, Auton. Neurosci. 92, 11 (2001) https://doi.org/10.1016/S1566-0702(01)00301-0
  12. P. Strop, A.T. Brunger. Protein Sci. 14, 2207 (2005) https://doi.org/10.1110/ps.051543805
  13. B. Lorber, J. B. Bishop, L. J. DeLucas, Biochim. Biophys. Acta 1023, 254 (1990) https://doi.org/10.1016/0005-2736(90)90421-J
  14. A. Chattopadhyay, E. London, Anal. Biochem. 139, 408 (1984) https://doi.org/10.1016/0003-2697(84)90026-5
  15. M. Kameyama, Hokkaido Igaku Zasshi 65, 1 (1990)
  16. M. T. Lin, L.J. Sperling, H. L. Frericks Schmidt, M. Tang, R.I. Samoilova, T. Kumasaka, T. Iwasaki, S.A. Dikanov, C. M. Rienstra, R. B. Gennis, Methods 55, 370 (2011) https://doi.org/10.1016/j.ymeth.2011.08.019
  17. A. Helenius, D. R. McCaslin, E. Fries, C. Tanford, Methods Enzymol. 56, 734 (1979) https://doi.org/10.1016/0076-6879(79)56066-2
  18. F. Nilsson, O. Soderman, P. Hansson, I. Johansson, Langmuir 14, 4050. (1998) https://doi.org/10.1021/la980261a
  19. R. J. Tausk, J. van Esch, J. Karmiggelt, G. Voordouw, J. T. Overbeek, Biophys. Chem. 1, 184 (1974) https://doi.org/10.1016/0301-4622(74)80005-0
  20. J. J. Chou, J. L. Baber, A. Bax, J. Biomol. NMR 29, 299 (2004) https://doi.org/10.1023/B:JNMR.0000032560.43738.6a
  21. R. E. Stafford, T. Fanni, E. A. Dennis, Biochemistry 28, 5113 (1989) https://doi.org/10.1021/bi00438a031
  22. L. M. Hjelmeland, D. W. Nebert, J. C. Osborne, Jr. Anal. Biochem. 130, 72 (1983) https://doi.org/10.1016/0003-2697(83)90651-6
  23. S. Park, J. Kor. Magn. Reson. Soc. 18, 47 (2014) https://doi.org/10.6564/JKMRS.2014.18.2.047
  24. T. Torizawa, M. Shimizu, M. Taoka, H. Miyano, M. Kainosho, J. Biomol. NMR 30, 311 (2004) https://doi.org/10.1007/s10858-004-3534-2
  25. H. W. Kim, J.A. Perez, S. J. Ferguson, I. D. Campbell, FEBS Lett. 272, 34 (1990) https://doi.org/10.1016/0014-5793(90)80442-L
  26. C. O'Grady, B. L. Rempel, A. Sokaribo, S. Nokhrin, O. Y. Dmitriev, Anal. Biochem. 426, 126 (2012) https://doi.org/10.1016/j.ab.2012.04.019
  27. K. I. Tong, M. Yamamoto, T. Tanaka, J. Biomol. NMR 42, 59 (2008) https://doi.org/10.1007/s10858-008-9264-0
  28. S. M. Douglas, J. J. Chou, W. M. Shih, Proc. Natl. Acad. Sci. U S A 104, 6644 (2007) https://doi.org/10.1073/pnas.0700930104
  29. D. E. Kamen, S. M. Cahill, M. E. Girvin, J. Am. Chem. Soc. 129, 1846 (2007) https://doi.org/10.1021/ja067089e
  30. M. Han, J. Suh, J. Kor. Magn. Reson. Soc. 19, 61 (2015) https://doi.org/10.6564/JKMRS.2015.19.2.061
  31. J. L. Battiste, G. Wagner, Biochemistry 39, 5355 (2000) https://doi.org/10.1021/bi000060h
  32. W. D. Van Horn, H. Kim, C. D. Ellis, A. Hadziselimovic, E.S. Sulistijo, M. D. Karra, C. Tian, F. D. Sonnichsen, C. R. Sanders, Science 324, 1726 (2009) https://doi.org/10.1126/science.1171716