References
- Hopkins, A. L. and Groom, C. R. (2002) The druggable genome. Nat. Rev. Drug. Discov. 1, 727-730 https://doi.org/10.1038/nrd892
- Franklin, M. C., Carey, K. D., Vajdos, F. F., Leahy, D. J., de Vos, A. M. and Sliwkowski, M. X. (2004) Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell 5, 317-328 https://doi.org/10.1016/S1535-6108(04)00083-2
- Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G.,Bhat, T. N., Weissig, H., Shindyalov, I. N. and Bourne, P. E. (2000) The protein data bank. Nucleic. Acids Res. 28, 235-242 https://doi.org/10.1093/nar/28.1.235
- White, S. H. (2004) The progress of membrane protein structure determination. Protein Sci. 13, 1948-1949 https://doi.org/10.1110/ps.04712004
- Thaminy, S., Auerbach, D., Arnoldo, A. and Stagljar, I. (2003) Identification of novel ErbB3-interacting factors using the split-ubiquitin membrane yeast two-hybrid system. Genome Res. 13, 1744-1753 https://doi.org/10.1101/gr.1276503
- Santoni, V., Molloy, M. and Rabilloud, T. (2000) Membrane proteins and proteomics: un amour impossible? Electrophoresis 21, 1054-1070 https://doi.org/10.1002/(SICI)1522-2683(20000401)21:6<1054::AID-ELPS1054>3.0.CO;2-8
- Buttner, K., Bernhardt, J., Scharf, C., Schmid, R., Mader, U., Eymann, C., Antelmann, H., Volker, A., Volker, U. and Hecker, M. (2001) A comprehensive two-dimensional map of cytosolic proteins of Bacillus subtilis. Electrophoresis 22, 2908-2935 https://doi.org/10.1002/1522-2683(200108)22:14<2908::AID-ELPS2908>3.0.CO;2-M
- Bowie, J. U. (2005) Solving the membrane protein folding problem. Nature 438, 581-589 https://doi.org/10.1038/nature04395
- White, S. H., Ladokhin, A. S., Jayasinghe, S. and Hristova, K. (2001) How membranes shape protein structure. J. Biol. Chem. 276, 32395-32398 https://doi.org/10.1074/jbc.R100008200
- Kyte, J. and Doolittle, R. F. (1982) A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105-132 https://doi.org/10.1016/0022-2836(82)90515-0
- von Heijne, G. and Blomberg, C. (1979) Trans-membrane translocation of proteins. The direct transfer model. Eur. J. Biochem. 97, 175-181 https://doi.org/10.1111/j.1432-1033.1979.tb13100.x
- Engelman, D. M. and Steitz, T. A. (1981) The spontaneous insertion of proteins into and across membranes: the helical hairpin hypothesis. Cell 23, 411-422 https://doi.org/10.1016/0092-8674(81)90136-7
- Engelman, D. M., Steitz, T. A. and Goldman, A. (1986) Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annu. Rev. Biophys. Biophys. Chem. 15, 321-353 https://doi.org/10.1146/annurev.bb.15.060186.001541
- Wimley, W. C. and White, S. H. (1996) Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat. Struct. Biol. 3, 842-848 https://doi.org/10.1038/nsb1096-842
- Jayasinghe, S., Hristova, K. and White, S. H. (2001) Energetics, stability, and prediction of transmembrane helices. J. Mol. Biol. 312, 927-934 https://doi.org/10.1006/jmbi.2001.5008
- Wallin, E., Tsukihara, T., Yoshikawa, S., von Heijne, G. and Elofsson, A. (1997) Architecture of helix bundle membrane proteins: an analysis of cytochrome c oxidase from bovine mitochondria. Protein Sci. 6, 808-815 https://doi.org/10.1002/pro.5560060407
- Weiss, M. S., Kreusch, A., Schiltz, E., Nestel, U., Welte, W., Weckesser, J. and Schulz, G. E. (1991) The structure of porin from Rhodobacter capsulatus at 1.8 A resolution. FEBS Lett. 280, 379-382 https://doi.org/10.1016/0014-5793(91)80336-2
- von Heijne, G. (1992) Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J. Mol. Biol. 225, 487-494 https://doi.org/10.1016/0022-2836(92)90934-C
- Zhou, H. and Zhou, Y. (2003) Predicting the topology of transmembrane helical proteins using mean burial propensity and a hidden-Markov-model-based method. Protein Sci. 12, 1547-1555 https://doi.org/10.1110/ps.0305103
- Klein, P., Kanehisa, M. and DeLisi, C. (1985) The detection and classification of membrane-spanning proteins. Biochim. Biophys. Acta. 815, 468-476 https://doi.org/10.1016/0005-2736(85)90375-X
- Hirokawa, T., Boon-Chieng, S. and Mitaku, S. (1998) SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14,378-379 https://doi.org/10.1093/bioinformatics/14.4.378
- Juretic, D., Zoranic, L. and Zucic, D. (2002) Basic charge clusters and predictions of membrane protein topology. J. Chem. Inf. Comput. Sci. 42, 620-632 https://doi.org/10.1021/ci010263s
- Hofmann, K. and Stoffel, W. (1993) TMBASE - A database of membrane spanning protein segments. Biol. Chem. Hoppe-Seyler 374, 166
- Rost, B., Casadio, R., Fariselli, P. and Sander, C. (1995) Transmembrane helices predicted at 95% accuracy. Protein Sci. 4, 521-533 https://doi.org/10.1002/pro.5560040318
- Tusnady, G. E. and Simon, I. (1998) Principles governing amino acid composition of integral membrane proteins: application to topology prediction. J. Mol. Biol. 283, 489-506 https://doi.org/10.1006/jmbi.1998.2107
- Krogh, A., Larsson, B., von Heijne, G. and Sonnhammer, E. L. (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567-580 https://doi.org/10.1006/jmbi.2000.4315
- Rost, B., Fariselli, P. and Casadio, R. (1996) Topology prediction for helical transmembrane proteins at 86% accuracy. Protein Sci. 5, 1704-1718 https://doi.org/10.1002/pro.5560050824
- Sonnhammer, E. L., von Heijne, G. and Krogh, A. (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. Proc. Int. Conf. Intell. Syst. Mol. Biol. 6, 175-182
- Chen, C. P., Kernytsky, A. and Rost, B. (2002) Transmembrane helix predictions revisited. Protein Sci. 11, 2774-2791 https://doi.org/10.1110/ps.0214502
- Ikeda, M., Arai, M., Lao, D. M. and Shimizu, T. (2002) Transmembrane topology prediction methods: a re-assessment and improvement by a consensus method using a dataset of experimentally-characterized transmembrane topologies. In Silico. Biol. 2, 19-33
- Jayasinghe, S., Hristova, K. and White, S. H. (2001) MPtopo: a database of membrane protein topology. Protein Sci. 10, 455-458 https://doi.org/10.1110/ps.43501
- Cuthbertson, J. M., Doyle, D. A. and Sansom, M. S. (2005) Transmembrane helix prediction: a comparative evaluation and analysis. Protein Eng. Des. Sel. 18, 295-308 https://doi.org/10.1093/protein/gzi032
- Moller, S., Croning, M. D. and Apweiler, R. (2001) Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17, 646-653 https://doi.org/10.1093/bioinformatics/17.7.646
- Tusnady, G. E. and Simon, I. (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics 17, 849-850 https://doi.org/10.1093/bioinformatics/17.9.849
- Persson, B. and Argos, P. (1997) Prediction of membrane protein topology utilizing multiple sequence alignments. J. Protein Chem. 16, 453-457 https://doi.org/10.1023/A:1026353225758
- Jones, D. T., Taylor, W. R. and Thornton, J. M. (1994) A model recognition approach to the prediction of all-helical membrane protein structure and topology. Biochemistry 33, 3038-3049 https://doi.org/10.1021/bi00176a037
- Nilsson, J., Persson, B. and von Heijne, G. (2000) Consensus predictions of membrane protein topology. FEBS Lett. 486, 267-269 https://doi.org/10.1016/S0014-5793(00)02321-8
- Nilsson, J., Persson, B. and Von Heijne, G. (2002) Prediction of partial membrane protein topologies using a consensus approach. Protein Sci. 11, 2974-2980 https://doi.org/10.1110/ps.0226702
- Xia, J. X., Ikeda, M. and Shimizu, T. (2004) ConPred_elite: a highly reliable approach to transmembrane topology predication. Comput. Biol. Chem. 28, 51-60 https://doi.org/10.1016/j.compbiolchem.2003.11.002
- Arai, M., Mitsuke, H., Ikeda, M., Xia, J. X., Kikuchi, T., Satake, M. and Shimizu, T. (2004) ConPred II: a consensus prediction method for obtaining transmembrane topology models with high reliability. Nucleic. Acids. Res. 32, W390-393 https://doi.org/10.1093/nar/gkh380
- Bernsel, A., Viklund, H., Hennerdal, A. and Elofsson, A. (2009) TOPCONS: consensus prediction of membrane protein topology. Nucleic. Acids. Res. 37, w465-468 https://doi.org/10.1093/nar/gkp363
- Claros, M. G. and von Heijne, G. (1994) TopPred II: an improved software for membrane protein structure predictions. Comput. Appl. BioSci. 10, 685-686
- Cserzo, M., Wallin, E., Simon, I., von Heijne, G. and Elofsson, A. (1997) Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the dense alignment surface method. Protein Eng. 10, 673-676 https://doi.org/10.1093/protein/10.6.673
- Viklund, H. and Elofsson, A. (2008) OCTOPUS: improving topology prediction by two-track ANN-based preference scores and an extended topological grammar. Bioinformatics 24, 1662-1668 https://doi.org/10.1093/bioinformatics/btn221
- Viklund, H. and Elofsson, A. (2004) Best alpha-helical transmembrane protein topology predictions are achieved using hidden Markov models and evolutionary information. Protein Sci. 13, 1908-1917 https://doi.org/10.1110/ps.04625404
- Bernsel, A., Viklund, H., Falk, J., Lindahl, E., von Heijne, G. and Elofsson, A. (2008) Prediction of membrane-protein topology from first principles. Proc. Natl. Acad. Sci. U. S. A. 105, 7177-7181 https://doi.org/10.1073/pnas.0711151105
- Kall, L., Krogh, A. and Sonnhammer, E. L. (2005) An HMM posterior decoder for sequence feature prediction that includes homology information. Bioinformatics 21 Suppl 1, i251-257 https://doi.org/10.1093/bioinformatics/bti1014
- Jones, D. T. (2007) Improving the accuracy of transmembrane protein topology prediction using evolutionary information. Bioinformatics 23, 538-544 https://doi.org/10.1093/bioinformatics/btl677
- Shen, H. and Chou, J. J. (2008) MemBrain: improving the accuracy of predicting transmembrane helices. PLoS ONE 3, e2399 https://doi.org/10.1371/journal.pone.0002399
- Pellegrini, M., Marcotte, E. M., Thompson, M. J., Eisenberg, D. and Yeates, T. O. (1999) Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc. Natl. Acad. Sci. U. S. A. 96, 4285-4288 https://doi.org/10.1073/pnas.96.8.4285
- Shimizu, T., Mitsuke, H., Noto, K. and Arai, M. (2004) Internal gene duplication in the evolution of prokaryotic transmembrane proteins. J. Mol. Biol. 339, 1-15 https://doi.org/10.1016/j.jmb.2004.03.048
- Liu, Y., Gerstein, M. and Engelman, D. M. (2004) Transmembrane protein domains rarely use covalent domain recombination as an evolutionary mechanism. Proc. Natl. Acad. Sci. U. S. A. 101, 3495-3497 https://doi.org/10.1073/pnas.0307330101
- Nishimura, K., Kim, S., Zhang, L. and Cross, T. A. (2002) The closed state of a H+ channel helical bundle combining precise orientational and distance restraints from solid state NMR. Biochemistry 41, 13170-13177 https://doi.org/10.1021/bi0262799
- Kim, S., Quine, J. R. and Cross, T. A. (2001) Complete cross-validation and R-factor calculation of a solid-state NMR derived structure. J. Am. Chem. Soc. 123, 7292-7298 https://doi.org/10.1021/ja003380x
- Wang, J., Kim, S., Kovacs, F. and Cross, T. A. (2001) Structure of the transmembrane region of the M2 protein H(+) channel. Protein Sci. 10, 2241-2250 https://doi.org/10.1110/ps.17901
- Kim, S. and Cross, T. A. (2002) Uniformity, ideality, and hydrogen bonds in transmembrane alpha-helices. Biophys. J. 83, 2084-2095 https://doi.org/10.1016/S0006-3495(02)73969-6
- Opella, S. J. and Marassi, F. M. (2004) Structure determination of membrane proteins by NMR spectroscopy. Chem. Rev. 104, 3587-3606 https://doi.org/10.1021/cr0304121
- Fleishman, S. J., Unger, V. M., Yeager, M. and Ben-Tal, N. (2004) A Calpha model for the transmembrane alpha helices of gap junction intercellular channels. Mol. Cell. 15, 879-888
- Fleishman, S. J., Harrington, S. E., Enosh, A., Halperin, D., Tate, C. G. and Ben-Tal, N. (2006) Quasi-symmetry in the cryo-EM structure of EmrE provides the key to modeling its transmembrane domain. J. Mol. Biol. 364, 54-67 https://doi.org/10.1016/j.jmb.2006.08.072
- Fleishman, S. J., Unger, V. M. and Ben-Tal, N. (2006) Transmembrane protein structures without X-rays. Trends Biochem. Sci. 31, 106-113 https://doi.org/10.1016/j.tibs.2005.12.005
- Arbely, E., Kass, I. and Arkin, I. T. (2003) Site-specific dichroism analysis utilizing transmission FTIR. Biophys. J. 85, 2476-2483 https://doi.org/10.1016/S0006-3495(03)74670-0
- Mukherjee, P., Kass, I., Arkin, I. T. and Zanni, M. T. (2006) Picosecond dynamics of a membrane protein revealed by 2D IR. Proc. Natl. Acad. Sci. U. S. A. 103, 3528-3533 https://doi.org/10.1073/pnas.0508833103
- Mukherjee, P., Kass, I., Arkin, I. T. and Zanni, M. T. (2006) Structural disorder of the CD3zeta transmembrane domain studied with 2D IR spectroscopy and molecular dynamics simulations. J. Phys. Chem. B. 110, 24740-24749 https://doi.org/10.1021/jp0640530
- Yohannan, S., Faham, S., Yang, D., Whitelegge, J. P. and Bowie, J. U. (2004) The evolution of transmembrane helix kinks and the structural diversity of G protein-coupled receptors. Proc. Natl. Acad. Sci. U. S. A. 101, 959-963 https://doi.org/10.1073/pnas.0306077101
- MacKenzie, K. R., Prestegard, J. H. and Engelman, D. M. (1997) A transmembrane helix dimer: structure and implications. Science 276, 131-133 https://doi.org/10.1126/science.276.5309.131
- Kim, S., Jeon, T. J., Oberai, A., Yang, D., Schmidt, J. J. and Bowie, J. U. (2005) Transmembrane glycine zippers: physiological and pathological roles in membrane proteins. Proc. Natl. Acad. Sci. U. S. A. 102, 14278-14283 https://doi.org/10.1073/pnas.0501234102
- Plotkowski, M. L., Kim, S., Phillips, M. L., Partridge, A. W., Deber, C. M. and Bowie, J. U. (2007) Transmembrane domain of myelin protein zero can form dimers: possible implications for myelin construction. Biochemistry 46, 12164-12173 https://doi.org/10.1021/bi701066h
- Barwe, S. P., Kim, S., Rajasekaran, S. A., Bowie, J. U. and Rajasekaran, A. K. (2007) Janus model of the Na,K-ATPase beta-subunit transmembrane domain: distinct faces mediate alpha/beta assembly and beta-beta homo-oligomerization. J. Mol. Biol. 365, 706-714 https://doi.org/10.1016/j.jmb.2006.10.029
- Reiersen, H. and Rees, A. R. (2001) The hunchback and its neighbours: proline as an environmental modulator. Trends Biochem. Sci. 26, 679-684 https://doi.org/10.1016/S0968-0004(01)01957-0
- Bright, J. N., Shrivastava, I. H., Cordes, F. S. and Sansom, M. S. (2002) Conformational dynamics of helix S6 from Shaker potassium channel: simulation studies. Biopolymers 64, 303-313 https://doi.org/10.1002/bip.10197
- Tieleman, D. P., Shrivastava, I. H., Ulmschneider, M. R. and Sansom, M. S. (2001) Proline-induced hinges in transmembrane helices: possible roles in ion channel gating. Proteins 44, 63-72 https://doi.org/10.1002/prot.1073
- Jin, T., Peng, L., Mirshahi, T., Rohacs, T., Chan, K. W., Sanchez, R. and Logothetis, D. E. (2002) The (beta) gamma subunits of G proteins gate a K(+) channel by pivoted bending of a transmembrane segment. Mol. Cell. 10, 469-481
- Wigley, W. C., Corboy, M. J., Cutler, T. D., Thibodeau, P. H., Oldan, J., Lee, M. G., Rizo, J., Hunt, J. F. and Thomas, P. J. (2002) A protein sequence that can encode native structure by disfavoring alternate conformations. Nat. Struct. Biol. 9, 381-388
- Lasso, G., Antoniw, J. F. and Mullins, J. G. (2006) A combinatorial pattern discovery approach for the prediction of membrane dipping (re-entrant) loops. Bioinformatics 22, e290-297 https://doi.org/10.1093/bioinformatics/btl209
- Rapp, M., Granseth, E., Seppala, S. and von Heijne, G. (2006) Identification and evolution of dual-topology membrane proteins. Nat. Struct. Mol. Biol. 13, 112-116 https://doi.org/10.1038/nsmb1057
- Bowie, J. U. (2006) Flip-flopping membrane proteins. Nat. Struct. Mol Biol. 13, 94-96 https://doi.org/10.1038/nsmb0206-94
- Choi, S., Jeon, J., Yang, J. S. and Kim, S. (2008) Common occurrence of internal repeat symmetry in membrane proteins. Proteins 71, 68-80 https://doi.org/10.1002/prot.21656
- Jeon, J., Yang, J. S. and Kim, S. (2009) Integration of evolutionary features for the identification of functionally important residues in Major Facilitator Superfamily (MFS) transporters. PLoS Comput. Biol. 5, e1000522 https://doi.org/10.1371/journal.pcbi.1000522
- Tang, S., Liao, J. C., Dunn, A. R., Altman, R. B., Spudich, J. A. and Schmidt, J. P. (2007) Predicting allosteric communication in myosin via a pathway of conserved residues. J. Mol. Biol. 373, 1361-1373 https://doi.org/10.1016/j.jmb.2007.08.059
- Suel, G. M., Lockless, S. W., Wall, M. A. and Ranganathan, R. (2003) Evolutionarily conserved networks of residues mediate allosteric communication in proteins. Nat. Struct. Biol. 10, 59-69 https://doi.org/10.1038/nsb881
- Lao, D. M. and Shimizu, T. (2001) A method for discriminating a signal peptide and a putative 1st transmembrane segment. Proceedings of the 2001 International Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences - METMBS '01. pp. 119-125, CSREA Press, USA
- Lao, D. M., Arai, M., Ikeda, M. and Shimizu, T. (2002) The presence of signal peptide significantly affects transmembrane topology prediction. Bioinformatics 18, 1562- 566 https://doi.org/10.1093/bioinformatics/18.12.1562
- Kall, L., Krogh, A. and Sonnhammer, E. L. (2004) A combined transmembrane topology and signal peptide prediction method. J. Mol. Biol. 338, 1027-1036 https://doi.org/10.1016/j.jmb.2004.03.016
- Walz, T., Hirai, T., Murata, K., Heymann, J. B., Mitsuoka, K., Fujiyoshi, Y., Smith, B. L., Agre, P. and Engel, A. (1997) The three-dimensional structure of aquaporin-1. Nature 387, 624-627 https://doi.org/10.1038/42512
- Doyle, D. A., Morais Cabral, J., Pfuetzner, R. A., Kuo, A., Gulbis, J. M., Cohen, S. L., Chait, B. T. and MacKinnon, R. (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69-77 https://doi.org/10.1126/science.280.5360.69
- Granseth, E., Viklund, H. and Elofsson, A. (2006) ZPRED: predicting the distance to the membrane center for residues in alpha-helical membrane proteins. Bioinformatics 22, e191-196 https://doi.org/10.1093/bioinformatics/btl206
- von Mering, C., Huynen, M., Jaeggi, D., Schmidt, S., Bork, P. and Snel, B. (2003) STRING: a database of predicted functional associations between proteins. Nucleic. Acids. Res. 31, 258-261 https://doi.org/10.1093/nar/gkg034
Cited by
- A class of rigid linker-bearing glucosides for membrane protein structural study vol.7, pp.3, 2016, https://doi.org/10.1039/C5SC02900G
- Conformationally Preorganized Diastereomeric Norbornane-Based Maltosides for Membrane Protein Study: Implications of Detergent Kink for Micellar Properties vol.139, pp.8, 2017, https://doi.org/10.1021/jacs.6b11997
- A Novel Metal Transporter Mediating Manganese Export (MntX) Regulates the Mn to Fe Intracellular Ratio and Neisseria meningitidis Virulence vol.7, pp.9, 2011, https://doi.org/10.1371/journal.ppat.1002261
- Mechanistic studies of the biogenesis and folding of outer membrane proteins in vitro and in vivo: What have we learned to date? vol.564, 2014, https://doi.org/10.1016/j.abb.2014.02.011
- Critical assessment of high-throughput standalone methods for secondary structure prediction vol.12, pp.6, 2011, https://doi.org/10.1093/bib/bbq088
- Predicting membrane protein types by incorporating protein topology, domains, signal peptides, and physicochemical properties into the general form of Chou’s pseudo amino acid composition vol.318, 2013, https://doi.org/10.1016/j.jtbi.2012.10.033
- Sequence–structure relationship study in all-α transmembrane proteins using an unsupervised learning approach vol.47, pp.11, 2015, https://doi.org/10.1007/s00726-015-2010-5
- Single-spanning transmembrane domains in cell growth and cell-cell interactions vol.4, pp.2, 2010, https://doi.org/10.4161/cam.4.2.12430
- Novel Xylene-Linked Maltoside Amphiphiles (XMAs) for Membrane Protein Stabilisation vol.21, pp.28, 2015, https://doi.org/10.1002/chem.201501083
- Bioinformatics approaches for functional annotation of membrane proteins vol.15, pp.2, 2014, https://doi.org/10.1093/bib/bbt015
- Membrane protein structure determination — The next generation vol.1838, pp.1, 2014, https://doi.org/10.1016/j.bbamem.2013.07.010
- Metazoans evolved by taking domains from soluble proteins to expand intercellular communication network vol.5, pp.1, 2015, https://doi.org/10.1038/srep09576
- Early Cold-Induced Peroxidases and Aquaporins Are Associated With High Cold Tolerance in Dajiao (Musa spp. ‘Dajiao’) vol.9, pp.1664-462X, 2018, https://doi.org/10.3389/fpls.2018.00282
- An Engineered Lithocholate-Based Facial Amphiphile Stabilizes Membrane Proteins: Assessing the Impact of Detergent Customizability on Protein Stability vol.24, pp.39, 2018, https://doi.org/10.1002/chem.201801141