• 제목/요약/키워드: membership degree

검색결과 147건 처리시간 0.022초

Finding Informative Genes From Microarray Gene Expression Data Using FIGER-test

  • Choi, Kyoung-Oak;Chung, Hwan-Mook
    • 한국지능시스템학회논문지
    • /
    • 제17권5호
    • /
    • pp.707-711
    • /
    • 2007
  • Microarray gene expression data is believed to show the functions of living organism through the gene expression values. We have studied a method to get the informative genes from the microarray gene expression data. There are several ways for this. In recent researches to get more sophisticated and detailed results, it has used the intelligence information theory like fuzzy theory. Some methods are to add fudge factors to the significance test for more refined results. In this paper, we suggest a method to get informative genes from microarray gene expression data. We combined the difference of means between two groups and the fuzzy membership degree which reflects the variance of the gene expression data. We have called our significance test the Fuzzy Information method for Gene Expression data(FIGER). The FIGER calculates FIGER variation ratio and FIGER membership degree to show how strongly each object belongs to the each group and then it results in the significance degree of each gene. The FIGER is focused on the variation and distribution of the data set to adjust the significance level. Out simulation shows that the FIGER-test is an effective and useful significance test.

A Hybrid Recommendation System based on Fuzzy C-Means Clustering and Supervised Learning

  • Duan, Li;Wang, Weiping;Han, Baijing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권7호
    • /
    • pp.2399-2413
    • /
    • 2021
  • A recommendation system is an information filter tool, which uses the ratings and reviews of users to generate a personalized recommendation service for users. However, the cold-start problem of users and items is still a major research hotspot on service recommendations. To address this challenge, this paper proposes a high-efficient hybrid recommendation system based on Fuzzy C-Means (FCM) clustering and supervised learning models. The proposed recommendation method includes two aspects: on the one hand, FCM clustering technique has been applied to the item-based collaborative filtering framework to solve the cold start problem; on the other hand, the content information is integrated into the collaborative filtering. The algorithm constructs the user and item membership degree feature vector, and adopts the data representation form of the scoring matrix to the supervised learning algorithm, as well as by combining the subjective membership degree feature vector and the objective membership degree feature vector in a linear combination, the prediction accuracy is significantly improved on the public datasets with different sparsity. The efficiency of the proposed system is illustrated by conducting several experiments on MovieLens dataset.

Reduction of Fuzzy Rules and Membership Functions and Its Application to Fuzzy PI and PD Type Controllers

  • Chopra Seema;Mitra Ranajit;Kumar Vijay
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권4호
    • /
    • pp.438-447
    • /
    • 2006
  • Fuzzy controller's design depends mainly on the rule base and membership functions over the controller's input and output ranges. This paper presents two different approaches to deal with these design issues. A simple and efficient approach; namely, Fuzzy Subtractive Clustering is used to identify the rule base needed to realize Fuzzy PI and PD type controllers. This technique provides a mechanism to obtain the reduced rule set covering the whole input/output space as well as membership functions for each input variable. But it is found that some membership functions projected from different clusters have high degree of similarity. The number of membership functions of each input variable is then reduced using a similarity measure. In this paper, the fuzzy subtractive clustering approach is shown to reduce 49 rules to 8 rules and number of membership functions to 4 and 6 for input variables (error and change in error) maintaining almost the same level of performance. Simulation on a wide range of linear and nonlinear processes is carried out and results are compared with fuzzy PI and PD type controllers without clustering in terms of several performance measures such as peak overshoot, settling time, rise time, integral absolute error (IAE) and integral-of-time multiplied absolute error (ITAE) and in each case the proposed schemes shows an identical performance.

하이브리드 신경망을 이용한 실내(室內) 쾌적감성(快適感性)모형 개발 (Development of Comfort Feeling Structure in Indoor Environments Using Hybrid Neuralnetworks)

  • 전용웅;조암
    • 대한인간공학회지
    • /
    • 제20권2호
    • /
    • pp.29-46
    • /
    • 2001
  • This study is about the modeling of comfort feeling structure in indoor environments. To represent the degree of practical comfort feeling level in an environment, we measured elements of human sense and resultant elements of comfort feeling such as coziness, refreshment, and freshness with physical values(temperature, illumination, noise. etc.). The relationships of elements of human sense and elements of comfort feeling were formulated as a fuzzy model. And a hybrid-neural network with three layers were designed where obtained from fuzzy membership function values of the elements of human sense were used as inputs, and given as fuzzy membership function values of resultant elements of comfort feeling were used as outputs. Both kinds of fuzzy membership function values were obtained from physical values. The network was trained by measured data set. The proposed hybrid-neural network were tested and proposed a more realistic model of comfort feeling structure in indoor environments.

  • PDF

Fuzzy Technique-based Identification of Close and Distant Clusters in Clustering

  • Lee, Kyung-Mi;Lee, Keon-Myung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제11권3호
    • /
    • pp.165-170
    • /
    • 2011
  • Due to advances in hardware performance, user-friendly interfaces are becoming one of the major concerns in information systems. Linguistic conversation is a very natural way of human communications. Fuzzy techniques have been employed to liaison the discrepancy between the qualitative linguistic terms and quantitative computerized data. This paper deals with linguistic queries using clustering results on data sets, which are intended to retrieve the close clusters or distant clusters from the clustering results. In order to support such queries, a fuzzy technique-based method is proposed. The method introduces distance membership functions, namely, close and distant membership functions which transform the metric distance between two objects into the degree of closeness or farness, respectively. In order to measure the degree of closeness or farness between two clusters, both cluster closeness measure and cluster farness measure which incorporate distance membership function and cluster memberships are considered. For the flexibility of clustering, fuzzy clusters are assumed to be formed. This allows us to linguistically query close or distant clusters by constructing fuzzy relation based on the measures.

소속함수와 Dempster-Shafer 증거합 법칙을 이용한 긴장도 평가 알고리즘 개발 (Development of Arousal Level Estimation Algorithm by Membership Function and Dempster-Shafer′s Rule of Combination in Evidence)

  • 정순철
    • 감성과학
    • /
    • 제5권1호
    • /
    • pp.17-24
    • /
    • 2002
  • 본 연구는 객관적인 생리신호로부터 인간의 감성을 추론할 수 있는 감성평가 전문가 시스템을 개발하기 위한 첫 번째 단계로 측정된 생리신호를 이용하여 인간의 긴장도를 판단하는 알고리즘의 개발을 목표로 한다. 감성평가와 관련된 애매함을 수리적으로 취급하기 위해 퍼지이론을 적용하여 임의의 감성영역에 속하는 정도를 소속함수로 정량화함으로써 감성평가를 가능하게 하고자 하였다. 소속함수의 결정은 상상을 통해 유발된 긴장/이완의 생리신호 데이터베이스 결과를 사용하였다. 그리고 두 가지 이상의 생리신호 측정결과와 각 생리신호의 소속함수로부터 하나의 최종결과(긴장도)를 유추하기 위해서 Dempster-Shafer증거합 법칙을 적용하였고, 이를 통해 최종적인 긴장도를 도출할 수 있도록 하였다.

  • PDF

모호한 목표를 가진 대화형 퍼지 다목적 의사결정 (Interactive Fuzzy Multiobjective Decision-Making with Imprecise Goals)

  • 이상환;홍성일
    • 한국경영과학회지
    • /
    • 제17권3호
    • /
    • pp.67-78
    • /
    • 1992
  • MODM (multiobjective decision-making) problem is very complex system for the analyst. The problem is more complex if the goals of each of the objective functions are expressed imprecisely. It requires suitable MODM method to deal with imprecisions. Therefore, we present a new interactive fuzzy decision making method for solving multiobjective nonlinear programming problems by assuming that the decision maker (DM) has imprecise goals that assume fuzzy linguistic variable for each of the objective functions. The imprecise goals of the DM are quantified by eliciting corresponding membership functions through the interactive with the DM out of six membership functions. After determining membership functions, in order to generate the compromise or satisficing solution which is .lambda.-pareto optimal, .lambda.-max problem is solved. The higher degree of membership is chosen to satisfy imprecise goals of all objective functions by combining the membership functions. Then, the values are the compromise or satisficing solution. On the basis of the proposed method, and interactive computer programming is written to implement man-machine interactive procedures. Our programming is a revised version of sequential unconstrained minimization technique. Finally, a numerical example illustrates various aspects of the results developed in this paper.

  • PDF

Interval-valued Fuzzy Soft Sets

  • Son, Mi-Jung
    • 한국지능시스템학회논문지
    • /
    • 제17권4호
    • /
    • pp.557-562
    • /
    • 2007
  • This paper extends the work of Maji et al. (2001) to present the concept of interval-valued fuzzy soft sets and to present an algorithm for finding where the degree of membership are represented by interval values in [0, 1]. The proposed method is more flexible than the one presented in Maji et at. (2001) due to the fact that it allows the degrees of membership of object for parameters to be represented by interval-values rather than crisp real values between zero and one.

퍼지 스위칭 모드를 이용한 하이브리드 제어기의 설계 (Design of the Hybrid Controller using the Fuzzy Switching Mode)

  • 최창호;임화영
    • 한국지능시스템학회논문지
    • /
    • 제10권3호
    • /
    • pp.260-269
    • /
    • 2000
  • The fuzzy and state-feedback control systems have been applied in various areas from non-linear to linear systems. A Fuzzy controller is endowed with control rules and membership function that are constructed on the knowledge of expert, as like intuition and experience. but It is very difficult to obtain the exact values which are the membership function and consequent parameters. though apply back-propagation algorithm to the system, the convergence time a much. Besides, the state-feedback system is most widely used in industry due to its simple control structure and easily able to design the controller. but it is weak in complex system of higher degree and non-linear. In this paper presents the design of a fuzzy switching mode, it these two controllers work at different operation conditions, the advantages of both controller can be retained and the disadvantages can be removed. Between the Fuzzy and the State-feedback controlles, the good outputs are selected by the switching mode. Moreover it is powerful in complex system of higher degree and non-linear. In these sense compared with the state-feedback controller, the performance of the proposed controller was improvedin the section of linearization.

  • PDF

불완전 데이터의 패턴 분석을 위한 $_{MI}$SVMs (A New Support Vector Machines for Classifying Uncertain Data)

  • Kiyoung, Lee;Dae-Won, Kim;Doheon, Lee;Kwang H., Lee
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 가을 학술발표논문집 Vol.31 No.2 (2)
    • /
    • pp.703-705
    • /
    • 2004
  • Conventional support vector machines (SVMs) find optimal hyperplanes that have maximal margins by treating all data equivalently. In the real world, however, the data within a data set may differ in degree of uncertainty or importance due to noise, inaccuracies or missing values in the data. Hence, if all data are treated as equivalent, without considering such differences, the optimal hyperplanes identified are likely to be less optimal. In this paper, to more accurately identify the optimal hyperplane in a given uncertain data set, we propose a membership-induced distance from a hyperplane using membership values, and formulate three kinds of membership-induced SVMs.

  • PDF