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Reduction of Fuzzy Rules and Membership Functions and Its
Application to Fuzzy PI and PD Type Controllers

Seema Chopra, Ranajit Mitra, and Vijay Kumar

Abstract: Fuzzy controller’s design depends mainly on the rule base and membership functions
over the controller’s input and output ranges. This paper presents two different approaches to
deal with these design issues. A simple and efficient approach; namely, Fuzzy Subtractive
Clustering is used to identify the rule base needed to realize Fuzzy PI and PD type controllers.
This technique provides a mechanism to obtain the reduced rule set covering the whole
input/output space as well as membership functions for each input variable. But it is found that
some membership functions projected from different clusters have high degree of similarity. The
number of membership functions of each input variable is then reduced using a similarity
measure. In this paper, the fuzzy subtractive clustering approach is shown to reduce 49 rules to 8
rules and number of membership functions to 4 and 6 for input variables (error and change in
error) maintaining almost the same level of performance. Simulation on a wide range of linear
and nonlinear processes is carried out and results are compared with fuzzy PI and PD type
controllers without clustering in terms of several performance measures such as peak overshoot,
settling time, rise time, integral absolute error (IAE) and integral-of-time multiplied absolute
error (ITAE) and in each case the proposed schemes shows an identical performance.

Keywords: Extraction of rules, fuzzy control, fuzzy subtractive clustering, membership

functions.

1. INTRODUCTION

The applicability of classical control methods have
been demonstrated in many control problems in
industry, however the ever-increasing demand of
flexibility will demand a response which does not
change due to parameter variations at all levels of
automation. Its simplicity has been the main reason
for its wide application in the industry. Since classical
controllers are fixed gain feedback controllers they
cannot compensate the parameter variation in the
plant easily and cannot adapt to changes in the
environment. The difficulties that arise in this
methodology are broadly classified into three
categories. The first is the computational complexity
due to mathematical modelling, second is the presence
of the non-linear processes with many degrees of
freedom and third is uncertainty (presence of noise
and load disturbances etc.). The greater the ability to
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deal with these difficulties, the more intelligent is the
control system. Because many living systems do
implement some sort of intelligent control, it has been
natural to look into computational paradigms used by
nature. Fuzzy logic and Artificial Neural Networks
represent such a biologically inspired paradigm.

Fuzzy Logic Controllers (FLC) have been
introduced and successfully applied. One of the
hallmarks of fuzzy logic is that it allows nonlinear
input/output relationships to be expressed by a set of
qualitative “if — then rules.” Nonlinear control and
process models may all be expressed in the form of
fuzzy rules. Most fuzzy systems are hand crafted by
human expert to capture some desired input/output
relationships that the expert has in mind. However
often an expert cannot express his or her knowledge
explicitly and for many applications, an expert may
not even exist. Hence there is considerable interest in
being able to extract fuzzy rules from experimental
input/output data. The motivation for capturing data
behavior in the form of fuzzy rules is easy to
understand [1]. An expert can check the rules for
completeness and fine-tune or extend the system by
editing the rule base. Obviously, it is difficult for
human experts to examine all the input/output data
from complex system to find the number of proper
rules for fuzzy system. To cope with this difficulty,
much research effort has been devoted to develop
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alternative design methods. Generally, these methods
consist of two learning phases, structure learning
phase and parameter learning phase. The structure
learning phase is employed to decide the structure of
fuzzy rules and parameter learning phase is used to
tune the coefficients of each rule (like the shape and
positions of membership functions). An important task
in the structure identification is the partition of the
input space, which influences the number of fuzzy
rules generated. Recently, methods for extracting
fuzzy rules have incorporated clustering techniques.
These methods require the user to prespecify the
structure of the rule base, i.e., number of rules per
class or number of membership functions per input
feature, along with initial values for the adjustable
parameters.

Clustering is the unsupervised classification of
patterns (observations, data item, or feature vectors)
into groups (clusters). But fuzzy clustering is also
very useful for constructing fuzzy if-then rules from
data. The structure of the rules depends on the
considered application. For fault diagnosis and other
classification tasks the rules aim at deciding to which
class in a finite set of classes (like ok/tolerable/faulty)
a given datum should be assigned. In system
identification or function approximation the rules
describe a usually continuous connection between
different variables (like in fuzzy control). Clustering
algorithms typically require the user to prespecify the
number of cluster centers and their initial locations;
the locations of the cluster centers are then adapted in
a way such that the cluster centers can better represent
a set of archetypical data points covering the range of
data behavior. The Fuzzy c-Means algorithm (FCM)
{2] and Kohonen’s Self-Organizing Map [3] method
are well-known examples of such clustering
algorithms. For these algorithms, the quality of the
solution, like that of most nonlinear optimization
problems, depends strongly on the choice of initial
values (i.e., the number of cluster centers and their
initial locations). Pal et al. [4] in 1997 survey the use
of clustering for identification of various parameters
of fuzzy systems. Issues discussed include the proper
domain for clustering, the clustering algorithm used,
validation of clusters, and system validation.

Kusiak and Chow [5] in 1987 give an efficient
clustering algorithm which has relatively low
computational time complexity. Cheng et al. [6]
presents a multistage random sampling fuzzy c-means
based clustering algorithm, which is used to create
fuzzy rules in the domain of magnetic resonance
images where over 60,000 patterns and 3 features of
attributes are common. Yang [7] in 1993 presents the
survey of fuzzy set theory applied in cluster analysis
and gives a survey of fuzzy clustering in three
categories. The first category is the fuzzy clustering
based on fuzzy relation. The second one is the fuzzy

clustering based on objective function. Finally, the
author gives an overview of a nonparametric classifier.
Runkler and Palm [8] in 1996 develops a regular
fuzzy c-elliptotype clustering algorithm for the direct
extraction of regular fuzzy systems from measured
data. In contrast to the conventional fuzzy c-
elliptotype  clustering, the modified algorithm
identifies clusters located on a regular grid. Regular
fuzzy clustering has a low computational complexity
and good convergence properties. A new approach [9]
to the design of fuzzy systems is presented by Sin and
Rui, assuming that the system specification is given in
terms of a large number of sample input/output pairs.
In this approach, there is no need to guess the number
and shapes of fuzzy sets in the input and output
universe of discourse, and the number of clusters can
be determined by using an appropriate measure of
cluster validity.

In 1985, Takagi and Sugeno [10] present a
mathematical tool to build a fuzzy model of a system
where fuzzy implications and reasoning are used. The
premise of an implication is the description of fuzzy
subspace of inputs and its consequence is a linear
input-output relation. The method of identification of
a system using its input-output data is then shown.
Hanss [11] in 1999 presents a special fuzzy modeling
method for developing multivariable fuzzy model on
the basis of measured input and output data. The fuzzy
model identification procedure is carried out by
applying fuzzy c-elliptotype method, to provide the
parameters of the fuzzy model. Gedeon ef al. [12] in
2002 present a method which extracts rules directly
from numerical data for a Sedimentary Rock Data Set.
This paper shows how pre-processing input data using
clustering may help the classification accuracy in
some cases.

Yager and Filev [13] proposed a simple and
effective algorithm, called the mountain method, for
estimating the number and initial location of cluster
centers. Their method is based on gridding the data
space and computing a potential value for each grid
point. Although this method is simple and effective,
the computation grows exponentially with the
dimension of the problem. Chiu [14] proposed an
extension of Yager and Filev’s mountain method,
called subtractive clustering, in which each data point,
rather than the grid point, is considered as a potential
cluster center. Using this method, the number of
effective “grid points” to be evaluated is simply equal
to the number of data points, independent of the
dimension of the problem. Another advantage of this
method is that it eliminates the need to specify a grid
resolution, in which tradeoffs between accuracy and
computational complexity must be considered.

Chiu [15] in 1997 presents methods for extracting
fuzzy rules for both function approximation and
pattern classification. The rule extraction methods are
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based on estimating clusters in the data; each cluster
obtained corresponds to a fuzzy rule that relates a
region in the input space to an output region (or, in the
case of pattern classification, to an output class). Chiu
[16] again in 1997 presents an efficient method for
extracting fuzzy - classification rules from high
dimensional data. A cluster estimation method called
subtractive clustering is used to efficiently extract
rules from a high dimensional feature space.

Pal and Mudi [17] used FCM [2] to identify the rule
base needed to realize a self-tuning fuzzy Pl-type
controller and they are able to reduce 49 rules to 17
rules by strategy 1 (data generated by uniform
sampling e and Ae). The performance of the identified
system is not quite satisfactory. Then they suggested
other methods to get the initial estimate of
membership functions (MFs) and data generated by
running the process in closed loop, called strategy 2,
for the improvement in performance. Grabusts [18]
aims at modeling the input-output relationship with
fuzzy IF-THEN rules by using fuzzy -clustering
technique. The main difference between fuzzy
clustering and other clustering techniques is that it
generates fuzzy partitions of the data instead of hard
partitions. The author examines two fuzzy-clustering
algorithms: FCM and subtractive clustering algorithm.

The Fuzzy c-means (FCM) clustering algorithm,
which has been widely studied and applied, needs a
priori knowledge of the number of clusters. Whenever
FCM requires a desired number of clusters and initial
guess positions for each cluster center, the output rules
depend strongly on the choice of initial values as the
FCM algorithm forms iteratively a suitable cluster
pattern in order to minimize an objective function
dependent of cluster locations. The auto-generation
capability for determining the number and initial
location of cluster centers through search techniques
was introduced in the mountain clustering method.
This method considers each discrete grid point as a
potential cluster center by computing a search
measure called the mountain function at each grid
point. It is a subtractive clustering method with
improved computational effort, in which the data
points themselves are considered as candidates for
cluster centers instead of grid points. By using this
method, the computation is simply proportional to the
number of data points and independent of the
dimension of the problem. In this method, a data point
with highest potential which is a function of the
distance measure is considered as a cluster center and
data points close to new cluster center are penalized in
order to control the emergence of new cluster centers.
Fuzzy c-means is a supervised algorithm, because it is
necessary to tell it how many clusters ‘¢’ to look for. If
‘¢’ is not known before, it is necessary to apply an
unsupervised algorithm. Subtractive clustering is
based on a measure of the density of data points in the

feature space. The idea is to find regions in the feature
space with high densities of data points. The point
with the highest number of neighbours is selected as
centre for a cluster. The data points within a
prespecified, fuzzy radius are then removed
(subtracted), and the algorithm looks for a new point
with the highest number of neighbours. This continues
until all data points are examined.

The preceding discussion shows that different
researchers have used different clustering algorithms
and different cluster validity indices to decide on the
number of rules. Our search though the literature
revealed that Subtractive Clustering is fast and robust
method for estimating the number and location of
cluster centers present in a collection of data points.
Initial fuzzy rules with rough estimate membership
functions are obtained from the cluster centers; the
membership functions and other rule parameters are
then optimized with respect to some output error
criterion.

The problem of the clustering based partition is that
corresponding membership functions in each input
variable are always opaque to the user, especially in
the case of high-input dimensions. This violates the
spirit of fuzzy systems that what a fuzzy rule means
and how it works should be easy to understand. This
problem can be solved by projecting the generated
cluster onto each dimension of the input space to form
a projected one-dimensional (1-D) membership
function for each input variable and represent a cluster
by the product of the projected membership functions,
as illustrated in Fig. 1 [20].

Compared with the grid-type partition, the
clustering-based partition does reduce the number of
generated rules, but not the number of membership
functions of each input variable as in [23]. To verify
this, suppose there are ‘n’ input variables and each
input variable is partitioned into ‘m’ parts (fuzzy
terms). Then the total number of membership
functions used is ‘nm’ for the grid-type partition. As to
the clustering-based partition, if there are ‘k’ clusters
formed, then the number of membership functions

X

Fig. 1. Clustering-based partitioning.
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generated is ‘nk’. In general, k is larger than m,
meaning that the clustering-based partition creates
more membership functions than the grid-type one
dose. In fact, by observing the projected membership
functions in Fig. 1, it is found in [23] that some
membership functions projected from different
clusters have high similarity degrees. In this paper,
these highly similar membership functions are
eliminated. This phenomenon occurs not only in the
clustering-based partitioning methods, but also in
other approaches like those based on the orthogonal
least square [OLS] method [24].

Firstly, Fuzzy Subtractive Clustering (FSC)
approach is used to decide the number of rules. After
that highly similar membership functions obtained
from subtractive clustering are eliminated using
similarity measure. Then FSC is wused for
identification of PD type Fuzzy Logic Controllers
(FPDC) and PI type FLC (FPIC). A comparison
between the clustering based Fuzzy Logic Controllers
and conventional Fuzzy Logic Controllers using
simulation of a wide range of linear and nonlinear
processes is presented.

2. CLUSTER ESTIMATION

If a cluster tendency assessment technique signals
existence of good substructure in the data, then it may
be easier to find an “optimal” number of rules.
However, irrespective of whether the input—output
data has cluster substructure or not, it is always
possible to partition it into a number of subsets and
each such subset can be converted into a rule. If the
data indeed has hyperspherical clusters [1], then the
number of rules (subsets) would be smaller compared
to the case when the data does not have any cluster
substructure. For example, if the input—output relation
is linear, the data will not exhibit any cluster structure,
yet it can be partitioned into a number of small
hyperspherical clusters to generate a set of rules to
identify such linear systems.

Consider a collection of n data points {x;, x3, ... X,,}
in an M dimensional space. Without loss of generality,
we assume that the data points have been normalized
in each dimension so that they are bounded by a unit
hypercube. We consider each data point as a possible
cluster center and define a measure of the potential of
data point xi as

n 2
F;. = Ze_a”xi_xj” , (1)
Jj=1
2
where a=4/r;. (2)
[l.]| denotes the Euclidean distance, and r, is a

positive constant. Thus, the measure of the potential
for a data point is a function of its distances to all

other data points. A data point with many neighboring
data points will have a high potential value. The
constant r, is effectively the radius defining a
neighborhood; data points outside this radius have
little influence on the potential. After the potential of
every data point has been computed, the data point
with the highest potential is selected as the first cluster
center. Let x;* be the location of the first cluster
center and P;* be its potential value. The potential of
each data point xi is revised by the formula
.2
x|

ReR-R*e" 3)

where B=4/r2, @

and 7, is a positive constant. Next, from each data
point, an amount of potential is subtracted as a
function of its distance from the first cluster center.
The data points near the first cluster center will have
greatly reduced potential, and therefore will be
unlikely to be selected as the next cluster center. The
constant r, is effectively the radius defining the
neighborhood which will have measurable reductions
in potential. To avoid obtaining closely spaced cluster
centers, 7, is set to be somewhat greater than r,; a
good choice is r, = 1.25 r,. When the potentials of all
data points have been revised according to (3), the
data point with the highest remaining potential is
selected as the second cluster center. The process is
then continued further. In general, after the kth cluster
center has been obtained, the potential of each data
point is revised by the formula

P <P -P*e ﬂ“x, ka2, 5)
where x;* is the location of the kth cluster center and
Py* is its potential value.

The process of acquiring new cluster center and
revising potentials repeats until the remaining
potential of all data points falls below some fraction
of the potential of the first cluster center Pi*. In
addition to this criterion for ending the clustering
process are criteria for accepting and rejecting cluster
centers that help avoid marginal cluster centers [15].

3. EXTRACTION OF RULES AND
MEMBERSHIP FUNCTIONS

To extract the rules, firstly data is separated into
groups according to their respective classes.
Subtractive clustering is then applied to the input
space of each group of data individually for
identifying each class of data [16]. The clusters found
in the data of a given group identify regions in the
input space that map into the associated class. Hence,
each cluster center may be translated into a fuzzy rule
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for identifying the class. For example, if subtractive
clustering was applied to the group of data for class
and cluster center x;* was found in the group of data
for class c1, then cluster center provides the rule:
Rule i: If {x is near x;*} then class is cl.

The degree of fulfillment of {x is near x;*} is
defined as

*
—allx—x;

Hi=¢e 2: (6)
where « is the constant defined by (2).

One can also write this rule in the more familiar
form:
Rule i: If X is 45 & X5 is Ap &... then class is cl,
where X; is the j’th input feature and A4; is the
membership function (Gaussian type) in the i’th rule
associated with the j’th input feature.
The membership function 4;; is given by

o’

* \2
1 x;-x; |
Ay (X ;) =exp —5( — "] , (7)

where x;;* is the j’th element of x;*, and
oy =1/Q2a). (8)

The degree of fulfillment of each rule is computed
by using multiplication as the AND operator. By
applying subtractive clustering to each class of data
individually, a set of rules may be obtained for
identifying each class. The individual sets of rules can
then be combined to form the rule base of the
classifier. When performing classification, the output
class of the classifier is simply determined by the rule
with the highest degree of fulfillment.

4. IMPLEMENTATION AND RESULTS

The FSC is used for identification of PD type FLC
and PI type FLC. But for Fuzzy Controllers,
parameter settings is necessary to determine universe
ranges and perform hundreds of simulation
experiments until acceptable values are not found. A
retrieval of optimal parameter is very difficult,
because the setting is dependent on lot of other
parameters and desired value. One method with the
unified universe range, stated in [19], considerably
simplifies the setting of fuzzy PI/PD/PID controller.
For the sake of completeness, a brief description of
parameter setting for fuzzy PI type controller is given.

4.1. Fuzzy PI controller design

Fuzzy PID controllers are physically related to
classical PID controller. A classical PI controller is
described by (9) where K is the gain of PI controller,

71 is an integral constant, e(f) is an error signal, e(f) =
r()-m(t), r(t) is the desired value, y(f) is the output
from process and u(¢) is the output from controller.

u(t) = K(e(?) +% j(; e(r)dr ©)

When we derive (9) we get

u'(t)y= K[e’(t) + Le(t)]. (10)
T
For a local extreme location we put
u'(t) :K[e'(t)+ie(t)j =0, an
T
ew)= ——TI;e(t). (12)

If we translate (11) to discrete form, we get the
equation for action value change of discrete PI
controller

Au(k) = K[Ae(k) +ie(k)], (13)
I

where Au(k)=(u(k)—u(k-1))/T,
Ae(k)=(e(k)—e(k-1))/T.
T is the sampling period, k is the step. Equation
(13) can also be written as

Au(k) = KTL(T,Ae(k) +e(k)). (14)
I

In next step it is necessary to map the rule base to
the discrete state space Ae(k), e(k). We define the

scale factor M for the universe range, M >0. This scale
factor sets the universe ranges for the error and its first
differences.

After extending (14) it becomes

M 1
Au(k)=K r (MAe(k)+ Me(k)). (15)

The placement of the base rules mapped into the
state plane according to (15) is determined only by the
chosen scale factor and the integral constant
magnitude. Multiplication of the normalized universe
is inversely proportional; therefore the values on axis
are inverted up against (15).

Then apply fuzzification to input variables and after
defuzzification,

M I 1
Au(k)—KT]D{F{MAe(k)+Me(k)}}, (16)
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The output of the fuzzy PI controller in the step % is
then

KmT I 1 _
: D{F{M Ne(k) +— e(k)}} +u(k —1).

(18)
The block diagram of PI type FLC is shown in Fig. 2.
The change in error is defined as

Ae(k) = e(k) — e(k —1),

u(k) =

(19)

where e(k) is the error at the kth sample.
All membership functions (MFs) for controller inputs
(i.e., e and Ade) and incremental change in controller
output (i.e.,, Adu) are defined on the common
normalized domain [-1,1]. The membership functions
are shown in Fig. 3.
Here the input and output gains are G, G, and G,,.

1 T;

KMT
G, =—, GAe:_’ Gu: .
M M T,

(20)

The operation of PI type FLC can be described by

u(k) =u(k — 1)+ Au(k). 2n
In (21), Au is the incremental change in controller
output, which is determined by the rules of the form If
e is E and Ae is AE, then Au is AU. The rule base for
computing Au is shown in Fig. 4, which is a fairly
standard one.

On the other hand, if the output of the FLC is u (not
Au) and there is no accumulation of controller output
then fig is converted to a PD type FLC. In this case,
the input and output gains G., G4 and G, are:

NB-Negative Big, NM-Negative Medium, NS-Negative Small,
ZE-Zero Error, PS-Positive Small, PM-Positive Medium, PB-
Positive Big

Fig. 3. MFs for e, Ae and Au.

Ae/e | NB |[NM | NS | ZE | PS | PM | PB
NM | NB | NB|NB|NM|[NS | NS | ZE
NM|NB |NM | NM | NM|[ NS | ZE | PS
NS NB|NM|NS|NS|ZE | PS | PM
ZE |[NB|NM | NS | ZE [ PS | PM | PB
PSINM|NS|ZE | PS [ PS | PM | PB
PM|[NS |ZE | PS |PM | PM | PM | PB
PB|ZE | PS | PS |PM | PB | PB | PB
Fig. 4. Rule base.
1 T,
Ge =——> Cae =—A%, G, = KM, (22)

where Tp is an derivative constant.

In this paper, PI and PD type FLC’s (system with
49 rules) will be denoted by FPIC and FPDC,
respectively, and their corresponding clustering based
FLC’s (system with reduced rule set) will be denoted
by TFPIC and TFPDC.

4.2. Identification of fuzzy controllers

The FPIC in Fig. 2 use 49 rules and 7 membership
functions in each variable to compute output, and
exhibits good performance [21]. Next, we investigate
the following — Given some data describing the output
(d4u) as a function of Inputs (i.e., ¢ and Ae), now main
aim is to extract a smaller set of rules using FSC
approach and then reduce membership functions to do
the same. Then, the performance of the simple
controller (identified system) compare with the
original one. Now the following steps are followed.
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4.2.1 Data generation -

To identify the FPIC and FPDC, some data is
needed, i.e., a set of two-dimensional input vectors
X={X1, X3,....X,} and the associated set of one-
dimensional output vectors as Y={Y,....... Y,} where
X={e and Ade} and Y={u} is required. Here, the data
has been generated by sampling input variables e and
Ae uniformly and computing the value of {u} for each
sampled point. The number of data points generated is
442,

4.2.2 Rule extraction and membership functions

After generating the data, the next step is to
estimate the rules. Although the number of rules
(clusters) is automatically determined by this method,
the user-specified parameter r, (the radius of influence
of cluster center) strongly affects the number of rules
that will be generated. A large r, generally results in
fewer rules, while a small », can produce excessive
number of rules. Thus r, is an approximate
specification. In this case data dimension is 3 (e.g., X
has 2 columns and Y has 1 column). Here the radius of
influence in the first data dimension is half the width
of the data space and the range of influence in the
second data dimension is one quarter the width of the
data space and so on [21,25].

Then after applying Subtractive Clustering algorithm,
eight clusters (rules) are extracted and eight MFs are
formed. But using the similarity measure, the number
of membership functions is reduced to 4 of input 1
‘error (e)” and 6 of input 2 ‘Change in error (Ae)’. The
membership functions of e and Ae after reduction are
shown in Fig. 5.

4.2.3 Results

The FSC approach has been tested on a variety of
linear and nonlinear processes, Type 0 and Type 1, of
orders from 1 to 3, with different values of dead time
(L). The objective here is to justify whether the
system after clustering (with less no. of rules and

1
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Fig. 5. MFs for e and Ae.

Table 1. Performance analysis for system 1 and 2.

System| FLC | %os | Ts tr |ITAE| IAE
1 FPDC [16.0 | 57 | 2.7 | 17 10
TFPDC| 17.0 | 5.6 | 2.7 | 18 10
2 | FPIC - 71 56 | 704 | 32
TFPIC - 72 56 | 747 | 33

Table 2. Performance analysis for system 3.

System| FLC | %os | fts tr |ITAE| IAE
3 |FPDC - 1.3 1086 | 27 9
TFPDC| - 1.35]1095 | 28 9.
3 |FPIC - 12 | 27 | 27 19
TFPIC - 13 | 27 | 28 19

Table 3. Performance analysis for system 4.

System| FLC | %os | ts tr |ITAE| IAE
4 |FPDC | 1521 42 | 2.1 | 907 [ 235
TFPDC | 198 | 4.2 | 2.1 | 887 | 231
4 |FPIC 1.5 8 7.5 1 27 19
TFPIC 3 8 7.5 | 28 19

membership functions can provide the same level of
performance as that of the original one (system with
49 rules). This has been tested for the processes
referred in [21,22,26] and observed satisfactory results
in each case except in some systems using FPIC
where after adjusting the values of gains (when all
rules are fired), then it is observed that the
performance of both the systems is close only on
particular gains. However, four of them are reported
here.

The process transfer functions G(s) are reproduced as

Gi(s)=e™/s (s+1), (23)
Ga(s)=(s+1)/(s>+95” +265+24), (24)
G3(s)=1/(s+1), (25)
4+ 37+0.25y% =u(t - L). (26)

The FPDC and FPIC as in Fig. 2 are used here with
values of gains (G,, G4 and G,) as 1 in almost all
cases except those systems in which all rules are not
fired (e and Ae are out of range) during simulation . In
those systems, input and output gains are calculated
from (20) and (22) as described in Section 4 (A). In
subsequent discussion, the performance of TFPIC and
TFPDC is considered good or satisfactory only when
its performance is close to that of FPIC and FPDC. In
this paper, it is emphasize that an identified system is
called satisfactory only with respect to its closeness to
the target system, here FPDC and FPIC. Response
characteristics for all systems with and without
clustering (with and without membership and rule
reduction) are shown in Figs. 6 to 11. A number of
performance indices such as peak overshoot (% 0s),
settling time (#,(s)) for + 5% tolerance band, rise time
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Fig. 6. Response of G (s)= ¢*'s/s(s+1) with FPDC.
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Fig. 7. Response of G(s)=(s+1)/(s’+95°+265+24) with
FPIC.

Fig. 8. Response of G5(s)= 1/(s+1) with FPDC.

(t.(s)), integral-absolute error (IAE), and integral of
time-multiplied absolute error (ITAE) are computed
[27,28] for a detailed performance comparison of the
identified system and the original systems. These
performance indices for both processes are provided
in tabular forms (Table 1, 2, and 3). In each table, row
corresponding to FPIC and FPDC presents the
performance of the original system.

To summarize, when the data set is generated by the
FLC with 49 rules, it exhibits cluster structure. Rules
are then generated using the approach FSC which
gives 8 rules and 8 membership functions. Then
highly similar membership functions are eliminated. It
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Fig. 9. Response of Gs(s)= 1/(s+1) with FPIC.
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Fig. 10. Response of nonlinear system with FPDC.
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Fig. 11. Response of nonlinear system with FPIC.

reduces the MFs of error to 4 and MFs of change in
error to 6. The overall performance of the clustering
based Fuzzy Logic Controllers is compared with those
of conventional Fuzzy Logic Controllers. Response
characteristics of the identified system in both cases
(FPDC and FPIC) are very close to the original one.

5. CONCLUSION

This paper presents two different approaches to
deal with the most important design issues i.e.,
number of rules, number of membership function of
Fuzzy Controllers. The FSC approach has been used



446 : Seema Chopra, Ranajit Mitra, and Vijay Kumar

to extract a rule base for the output ‘u’ of a FPIC and
FPDC. This method is fast for estimating the number
and location of cluster centers present in a collection
of data points. After that highly similar membership
functions obtained from subtractive clustering are
eliminated using similarity measure. The proposed
combination is able to reduce 49 rules to 8 rules and
the number of MFs to 4 and 6 for error and change in
error maintaining almost the same level of
performance. The main advantage of the proposed
approach is that by reducing the rules and membership
functions, it can significantly reduce the time and
effort needed to design a fuzzy controller directly
from numerical data.
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