• 제목/요약/키워드: melts

검색결과 273건 처리시간 0.018초

Fining of Flint Glass Melts Containing Blast Furnace Slag

  • Kim, Ki-Dong
    • 한국세라믹학회지
    • /
    • 제44권11호
    • /
    • pp.618-621
    • /
    • 2007
  • In this study, flint glass batches with blast furnace slag (BFS) were prepared and the contribution of the BFS to the fining of melts was studied through investigations of the melting and fining characteristics. Additionally, a sulfur redox reaction for BFS-doped melts was examined by square wave voltammetry (SWV). The results of the melting & fining test showed that BFS improved the fining of the melts. In a voltammogram of BFS-doped melts, two reduction peaks were shown at high frequencies while only one peak appeared at low frequencies. The peaks were located at a potential that was similar to those of melts fined by sulfate. From those results it was concluded that sulfide ($S^{2-}$) in BFS has effects in glass melts that are identical to those of sulfate ($SO_4^{2-}$).

Behavior of Oxygen Equilibrium Pressure in CRT Glass Melts doped with Sb and Ce ions from the Viewpoint of Fining

  • Kim, Ki-Dong;Kim, Hyo-Kwang;Kim, Jun-Hong
    • 한국세라믹학회지
    • /
    • 제44권8호
    • /
    • pp.419-423
    • /
    • 2007
  • The behavior of oxygen gas participating in fining was observed in CRT (Cathode Ray Tube) glass melts doped with $Sb_2O_5\;or\;CeO_2$ by means of a yttria-stabilized zirconia (YSZ) electrode. The temperature dependence of the oxygen equilibrium pressure ($P_{o2}$) or the activity in both melts showed typical behavior corresponding to a theoretical redox reaction. In other words, the $P_{o2}$ value of melts with $CeO_2$ was lower than that of melts with $Sb_2O_5$ above $1250^{\circ}C$. The result implies that $Sb_2O_5$, is more efficient as a fining agent compared to $CeO_2$. On the other hand, melts from a batch containing $Sb_2O_5\;and\;KNO_3$ showed much higher $P_{o2}$ values compared to melts without $KNO_3$ above $1350^{\circ}C$. It is suggested that the addition of $KNO_3$ to CRT glass batch contributes partly to the first fining of the melts.

$LaCl_3-NaCl$ 2성분계 용융염의 점도 (Viscosities of $LaCl_3-NaCl$ Binary Melts)

  • 김기호
    • 한국표면공학회지
    • /
    • 제39권6호
    • /
    • pp.282-287
    • /
    • 2006
  • Viscosities of $LaCl_3-NaCl$ binary melts were measured by the capillary method over the range of their liquidus temperatures to about 1200K. The cell constant were determined by using pure water. The results obtained are summerized as follows: Viscosities were decreased with the content of NaCl for all over the composition range of binary melts. Composition - viscosity relation for the binary melts show a non-linear from the additivity line and the deviations shows a maximum at about 60 mol% NaCl. This suggests the existence of the complex ion of $LaCl_4^-$ in the melt. Activation energy for viscous flow of the binary melts decrease monotonously with the increasing content of NaCl.

Redox Reaction of Multivalent Ions in Glass Melts

  • Kim, Kidong
    • 한국세라믹학회지
    • /
    • 제52권2호
    • /
    • pp.83-91
    • /
    • 2015
  • The redox reaction $M^{(x+n)+}+\frac{n}{2}O^{-2}{\rightleftarrows}M^{x+}+\frac{n}{4}O_2$ of multivalent ions in glass melts influences the melting process and final properties of the glass including the fining (removal of bubbles), infrared absorption and homogenization of melts, reaction between metal electrodes and melts or refractory and melts, and transmission and color of glass. In this review paper, the redox behaviors that occur frequently in the glass production process are introduced and the square wave voltammetry (SWV) is described in detail as an in situ method of examining the redox behavior of multivalent ions in the melt state. Finally, some voltammetry results for LCD glass melts are reviewed from the practical viewpoint of SWV.

Constitutive equations for polymer mole and rubbers: Lessons from the $20^{th}$ century

  • Wagner, Manfred H.
    • Korea-Australia Rheology Journal
    • /
    • 제11권4호
    • /
    • pp.293-304
    • /
    • 1999
  • Refinements of classical theories for entangled or crosslinked polymeric systems have led to incommensurable models for rubber networks and polymer melts, contrary to experimental evidence, which suggests a great deal of similarity. Uniaxial elongation and compression data of linear and branched polymer melts as well as of crosslinked rubbers were analyzed with respect to their nonlinear strain measure. This was found to be the result of two contributions: (1) affine orientation of network strands, and (2) isotropic strand extension. Network strand extension is caused by an increasing restriction of lateral movement of polymer chains due to deformation, and is modelled by a molecular stress function which in the tube concept of Doi and Edwards is the inverse of the relative tube diameter. Up to moderate strains, $f^2$ is found to be linear in the average stretch for melts as well as for rubbers, which corresponds to a constant tube volume. At large strains, rubbers show maximum extensibility, while melts show maximum molecular tension. This maximum value of the molecular stress function governs the ultimate magnitude of the strain-hardening effect of linear and long-chain branched polymer melts in extensional flows.

  • PDF

용융 LaCl3-KCl 2성분계 혼합염의 전기전도도 (Electric Conductivities of LaCl3-KCl Binary Melts)

  • 김기호
    • 한국표면공학회지
    • /
    • 제47권1호
    • /
    • pp.48-52
    • /
    • 2014
  • Electric conductivities of $LaCl_3$-KCl binary melts have been measured by the Kohlausch bridge method over the range from their liquidus temperatures to about 1280 K. The electric conductivity increased with the content of KCl for all over the composition range of binary melts. The composition dependence of the electric conductivity and molar conductivity for the binary melt showed a non-linear relation from the additivity line, and the deviation showed a maximum value at about 60 mol.% KCl. The deviation implies the existence of complex ion of $LaCl^{4-}$ in the melt. Activation energy for electric conductivity of the binary melts decreased monotonously with increasing content of KCl.

용융 LaC $l_3$-LiCl 2성분계 혼합염의 전도도 (Electric Conductivities of LaC $l_3$-LiCl Binary Melts)

  • 김기호
    • 한국표면공학회지
    • /
    • 제37권5호
    • /
    • pp.301-306
    • /
    • 2004
  • Electric Conductivities of $LaCl_3$-LiCl binary melts have been measured by the Kohlausch bridge method over the range of their liquidus temperatures to about 1200 K. The electric conductivity increases with the content of LiCl for all over the composition range of binary melts. Composition dependence of the electric conductivity and molar conductivity for the binary melt shows a non-linear relation from the additivity line, and the deviations displays a maximum value at about 60 mol % LiCl. This suggest the existence of the complex ion of$ LaCl_{4}^{-}$ in the melt. Activation energy for electric conductivity of the binary melts decrease monotonously with increasing content of LiCl.l.

LaCl3-CsCl 2성분계 용융염의 점도 (Viscosities of LaCl3-CsCl Binary Melts)

  • 김기호
    • 한국표면공학회지
    • /
    • 제46권2호
    • /
    • pp.87-92
    • /
    • 2013
  • Viscosities of $LaCl_3$-CsCl binary melts were measured by the capillary method over the range of their liquidus temperatures to about 1200 K. The cell constant were determined by using pure water. The results obtained are summerized as follows: Viscosities of melted $LaCl_3$ were decreased with the content of CsCl for all over the composition range of binary melts. Composition versus viscosity relation for the binary melt showed a non-linear relationship from the additivity line and the deviations showed a maximum value at about 60 mol% CsCl. This suggest the existence of the complex ion of $LaCl_4{^-}$ in the melt. Activation energy for the viscous flow of the binary melts decreased monotonously with the increasing content of CsCl after a few increasement till 40 mol% CsCl. All of these results were the resemble with the viscosities of $LaCl_3$-NaCl binary melts.

Plasma Display Panel용 기판 유리용융체의 내화물 침식 (Corrosion of Refractory in Glass Melts for Plasma Display Panel Substrate)

  • 김기동;정현수;김효광
    • 한국세라믹학회지
    • /
    • 제44권1호
    • /
    • pp.65-69
    • /
    • 2007
  • For self-developed alkali-alkaline earth-silicate and commercial glass melts for plasma display panel substrate, the corrosion behavior of fused casting refractory consisting of $Al_2O_3-ZrO_2-SiO_2$ was examined at the temperature corresponding to $10^2\;dPa{\cdot}s$ of melt viscosity by static finger methode. The corroded refractory specimens showed a typical concave shape due to interfacial convection of melts at their flux line. However, the corrosion thickness by commercial glass melts was $6\sim10$ times comparing to that by the self?developed melts. From the view point of the glass composition and the role of alkaline earth in glass network, it was discussed the effect of alkali/alkaline earth diffusion and temperature on the refractory corrosion.

Structure-property relations for polymer melts: comparison of linear low-density polyethylene and isotactic polypropylene

  • Drozdov, A.D.;Al-Mulla, A.;Gupta, R.K.
    • Advances in materials Research
    • /
    • 제1권4호
    • /
    • pp.245-268
    • /
    • 2012
  • Results of isothermal torsional oscillation tests are reported on melts of linear low density polyethylene and isotactic polypropylene. Prior to rheological tests, specimens were annealed at various temperatures ranging from $T_a$ = 180 to $310^{\circ}C$ for various amounts of time (from 30 to 120 min). Thermal treatment induced degradation of the melts and caused pronounced decreases in their molecular weights. With reference to the concept of transient networks, constitutive equations are developed for the viscoelastic response of polymer melts. A melt is treated as an equivalent network of strands bridged by junctions (entanglements and physical cross-links). The time-dependent response of the network is modelled as separation of active strands from and merging of dangling strands with temporary nodes. The stress-strain relations involve three adjustable parameters (the instantaneous shear modulus, the average activation energy for detachment of active strands, and the standard deviation of activation energies) that are determined by matching the dependencies of storage and loss moduli on frequency of oscillations. Good agreement is demonstrated between the experimental data and the results of numerical simulation. The study focuses on the effect of molecular weight of polymer melts on the material constants in the constitutive equations.