• Title/Summary/Keyword: medium voltage

Search Result 425, Processing Time 0.025 seconds

Effects of Permalloy Multilayered Schemes and CoZrNb Intermediate Layer on Recording Characteristics of CoCr/NiFe Media (Permalloy 다층화와 CoZrNb 중간층이 CoCr/NiFe 매체의 기록특성에 미치는 영향)

  • 장평우;이택동;박관수
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.1
    • /
    • pp.20-24
    • /
    • 1994
  • The read/write characteristics of CoCr/NiFe double layered media are strongly affected by the magnetic properties of NiFe magnetic soft layer as well as those of CoCr recording layer. Modification of the permalloy layer by NiFe/Ge multilayer scheme resulted in the higher recording sensitivity and the higher reproduced voltage of CoCr/NiFe medium and this is attributed to the higher permeability of the back layer and high perpendicular anisotropy of the CoCr recording layer. Although higher permeability of back layer results in higher recording sensitivity, the increment of the reproduced voltage was not remarkable, which can be confirmed in the FEM numerical analysis. On the contrary, peak shift characteristics of the CoCr/NiFe medium with the NiFe multi back layer was deteriorated compared to that of the CoCr/NiFe medium with NiFe single back layer. Insertion of ferromagnetic thin CoZrNb intermediate layer between CoCr and NiFe layer was effective to ensure large reproduced voltage and low peak shift. These recoridng characteristics were also discussed in connection with microstructural characteristics.

  • PDF

Design Optimization Simulation of Superconducting Fault Current Limiter for Application to MVDC System (MVDC 시스템의 적용을 위한 초전도 한류기의 설계 최적화 시뮬레이션)

  • Seok-Ju Lee
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.3
    • /
    • pp.41-49
    • /
    • 2024
  • In this paper, we validate simulation results for the design optimization of a Superconducting Fault Current Limiter (SFCL) intended for use in Medium Voltage Direct Current systems (MVDC). With the increasing integration of renewable energy and grid connections, researchers are focusing on medium-voltage systems for balancing energy in new and renewable energy networks, rather than traditional transmission or distribution networks. Specifically, for DC distribution networks dealing with fault currents that must be rapidly blocked, current-limiting systems like superconducting current limiters offer distinct advantages over the operation of DC circuit breakers. The development of such superconducting current limiters requires finite element analysis (FEM) and an extensive design process before prototype production and evaluation. To expedite this design process, the design outcomes are assimilated using a Reduced Order Model (ROM). This approach enables the verification of results akin to finite element analysis, facilitating the optimization of design simulations for production and mass production within existing engineering frameworks.

Meduim Vector PWM for Elimination of Common Mode Voltage Variation in Three-level Inverter (3-레벨 인버터의 공통모드 전압 변동 제거를 위한 Medium Vector PWM)

  • Choi, Nam-Sup;Lee, Eun-Chul;Ahn, Kang-Soon
    • Proceedings of the KIPE Conference
    • /
    • 2014.11a
    • /
    • pp.205-206
    • /
    • 2014
  • 본 논문에서는 3-레벨 인버터 시스템에서 공통 모드 전압 변동 제거를 위한 새로운 Medium Vector PWM(MVPWM)을 제안한다. 제안된 MVPWM의 특징은 다음과 같다. 1) 스위칭 상태와 관계없이 공통모드 전압은 일정하게 유지된다. 2) 무게 중심좌표계 방법에 의하여 구현되므로 구현이 간단하고 직관적이다. 본 논문에서는 시뮬레이션을 통하여 제안된 MVPWM의 위와 같은 특성을 밝히고 태양광 인버터의 제어에 적합함을 입증하였다.

  • PDF

Characteristics on the Neutral Point Potential of Line-to-Ground Voltage according to Line-to-Ground Fault in Resistance Ground System for Ships (선박의 저항접지 시스템에서 지락 고장에 따른 대지전압 중성점 전위 특성)

  • Lee, Yun-Hyung;Ryu, Ki-Tak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.689-696
    • /
    • 2018
  • System grounding is applied to the neutral point of a power source to secure the from any abnormal voltage and/or grounding fault. System grounding, which is applied mainly in ships is an ungrounded and resistance grounded system. Vessels using the MV power system with 3.3kV, 6.6kV, and 11kV mainly adopt a high resistance grounding system among the resistance grounding systems. The ground fault accounts for 95% of all faults occurring in the electrical system and when a fault occurs, the line-to-ground voltage of the power system is increased excessively, which adversely affects the onboard insulation system. This study analyzed the variation characteristics of the line-to-ground voltage neutral point according to the degree of ground fault in a resistance ground system applied in vessels. For this purpose, the characteristics of the grounding system were first explained, and the modeling of the neutral point potential of the line-to-ground voltage of the resistance grounding system in the vessels was derived. Finally, this study examined how the line-to-ground voltage, line voltage, and neutral point change according to various variable environments through MATLAB simulations.

Design of eFuse OTP IP for Illumination Sensors Using Single Devices (Single Device를 사용한 조도센서용 eFuse OTP IP 설계)

  • Souad, Echikh;Jin, Hongzhou;Kim, DoHoon;Kwon, SoonWoo;Ha, PanBong;Kim, YoungHee
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.422-429
    • /
    • 2022
  • A light sensor chip requires a small capacity eFuse (electrical fuse) OTP (One-Time Programmable) memory IP (Intellectual Property) to trim analog circuits or set initial values of digital registers. In this paper, 128-bit eFuse OTP IP is designed using only 3.3V MV (Medium Voltage) devices without using 1.8V LV (Low-Voltage) logic devices. The eFuse OTP IP designed with 3.3V single MOS devices can reduce a total process cost of three masks which are the gate oxide mask of a 1.8V LV device and the LDD implant masks of NMOS and PMOS. And since the 1.8V voltage regulator circuit is not required, the size of the illuminance sensor chip can be reduced. In addition, in order to reduce the number of package pins of the illumination sensor chip, the VPGM voltage, which is a program voltage, is applied through the VPGM pad during wafer test, and the VDD voltage is applied through the PMOS power switching circuit after packaging, so that the number of package pins can be reduced.

Control Strategy Compensating for Unbalanced Grid Voltage Through Negative Sequence Current Injection in PMSG Wind Turbines

  • Kang, Jayoon;Park, Yonggyun;Suh, Yongsug;Jung, Byoungchang;Oh, Juhwan;Kim, Jeongjoong;Choi, Youngjoon
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.244-245
    • /
    • 2013
  • This paper proposes a control algorithm for permanent magnet synchronous generator with a back-to-back three-level neutral-point clamped voltage source converter in a medium-voltage offshore wind power system under unbalanced grid conditions. The proposed control algorithm particularly compensates for the unbalanced grid voltage at the point of common coupling in a collector bus of offshore wind power system. This control algorithm has been formulated based on the symmetrical components in positive and negative rotating synchronous reference frames under generalized unbalanced operating conditions. Instantaneous active and reactive power are described in terms of symmetrical components of measured grid input voltages and currents. Negative sequential component of ac input current is injected to the point of common coupling in the proposed control strategy. The amplitude of negative sequential component is calculated to minimize the negative sequential component of grid voltage under the limitation of current capability in a voltage source converter. The proposed control algorithm makes it possible to provide a balanced voltage at the point of common coupling resulting in the generated power of high quality from offshore wind power system under unbalanced network conditions.

  • PDF

Measurements of Voltage & Current from MV Class GIS Using a Bulk Type Optical Sensor (Bulk Type Optical Sensor를 이용한 MV급 GIS의 전압.전류 측정)

  • Park, J.N.;Lee, S.W.;Kim, Y.G.;Lee, H.S.;Kim, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1658-1660
    • /
    • 2004
  • Use of higher voltage and higher capacity of power systems and their equipment is leading to an increase in the size of the entire system. In order to reduce the cost of constructing a substation, it is necessary to reduce the size of equipment. So, this paper described optical sensor, which exploited the electric and magnetic potentiometer to sense the measured voltage and current of medium voltage GIS. It can be used both in measurement and in protection relays as its well linearity, rapid response, broad dynamic range, wide frequency band, no magnetic saturation, small in volume, light weight, and saft in insulation.

  • PDF

A Level Dependent Source Concoction Multilevel Inverter Topology with a Reduced Number of Power Switches

  • Edwin Jose, S.;Titus, S.
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1316-1323
    • /
    • 2016
  • Multilevel inverters (MLIs) have been preferred over conventional two-level inverters due to their inherent properties such as reduced harmonic distortion, lower electromagnetic interference, minimal common mode voltage, ability to synthesize medium/high voltage from low voltage sources, etc. On the other hand, they suffer from an increased number of switching devices, complex gate pulse generation, etc. This paper develops an ingenious symmetrical MLI topology, which consumes lesser component count. The proposed level dependent sources concoction multilevel inverter (LDSCMLI) is basically a multilevel dc link MLI (MLDCMLI), which first synthesizes a stepped dc link voltage using a sources concoction module and then realizes the ac waveform through a conventional H-bridge. Seven level and eleven level versions of the proposed topology are simulated in MATLAB r2010b and prototypes are constructed to validate the performance. The proposed topology requires lesser components compared to recent component reduced MLI topologies and the classical topologies. In addition, it requires fewer carrier signals and gate driver circuits.

Performance Evaluation with Protective Function test of Inverter for Solar Power Generation (태양광발전용 인버터 보호기능시험 성능평가)

  • Yoon, Yong-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1570-1575
    • /
    • 2018
  • The increased penetration of PV is impacting on grid operation and in particular the voltage within the local grid can be significantly influenced by the various PV systems. The increased penetration of PV is impacting on grid operation and in particular the voltage within the local grid can be significantly influenced by the various PV systems. This paper describes domestic technical standard of Photovoltaic(PV) PCS(Power Conditioning Systems)- Characteristics of the utility interface. Especially protective function test items of 1) Output overvoltage protection test, 2) Output undervoltage protection test, 3) Frequency rise protection test, 4) Frequency fall protection test, 5) System voltage's momentary interruptions, 6) System voltage distortion capability test. Therefore in this paper protective function test item of facilities evaluation detailed standards for new renewable energy, small, medium and large photovoltaic inverter standard is studied and analyzed and finally full tested by PV inverter performance function.

Flying Capacitor DTC Drive with Reductions in Common Mode Voltage and Stator Overvoltage

  • Rahmati, Abdolreza;Arasteh, Mohammad;Farhangi, Shahrokh;Abrishamifar, Adib
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.512-519
    • /
    • 2011
  • This paper gives a detailed analysis of the direct torque control (DTC) strategy in a five-level drive and proposes a 24-sector switching table. The known problems in low-voltage drives such as bearings currents and an overvoltage phenomenon which leads to premature failure are reviewed and the occurrence of these problems in medium voltage drives has been investigated. Then a solutions to these problems is presented and the switching table to deal with these problems is modified. Simulation and experimental results on a 3kVA prototype confirm the proposed solution. In implementing the above strategy a TMS320F2812 is used.