• Title/Summary/Keyword: medical internal radiation dosimetry

Search Result 31, Processing Time 0.021 seconds

Application of the new ICRP iodine biokinetic model for internal dosimetry in case of thyroid blocking

  • Kwon, Tae-Eun;Chung, Yoonsun;Ha, Wi-Ho;Jin, Young Woo
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1826-1833
    • /
    • 2020
  • Administration of stable iodine has been considered a best measure to protect the thyroid from internal irradiation by radioiodine intake, and its efficacy on thyroid protection has been quantitatively evaluated in several simulation studies on the basis of simple iodine biokinetic models (i.e., three-compartment model). However, the new iodine biokinetic model adopted by the International Commission on Radiological Protection interprets and expresses the thyroid blocking phenomenon differently. Therefore, in this study, the new model was analyzed in terms of thyroid blocking and implemented to reassess the protective effects and to produce dosimetric data. The biokinetic model calculation was performed using computation modules developed by authors, and the results were compared with those of experimental data and prior simulation studies. The new model predicted protective effects that were generally consistent with those of experimental data, except for those in the range of stable iodine administration -72 h before radioiodine exposure. Additionally, the dosimetric data calculated in this study demonstrates a critical limitation of the three-compartment model in predicting bioassay functions, and indicated that dose assessment 1 d after exposure would result in a similar dose estimate irrespective of the administration time of stable iodine.

COMPUTATIONAL ANTHROPOMORPHIC PHANTOMS FOR RADIATION PROTECTION DOSIMETRY: EVOLUTION AND PROSPECTS

  • Lee, Choon-Sik;Lee, Jai-Ki
    • Nuclear Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.239-250
    • /
    • 2006
  • Computational anthropomorphic phantoms are computer models of human anatomy used in the calculation of radiation dose distribution in the human body upon exposure to a radiation source. Depending on the manner to represent human anatomy, they are categorized into two classes: stylized and tomographic phantoms. Stylized phantoms, which have mainly been developed at the Oak Ridge National Laboratory (ORNL), describe human anatomy by using simple mathematical equations of analytical geometry. Several improved stylized phantoms such as male and female adults, pediatric series, and enhanced organ models have been developed following the first hermaphrodite adult stylized phantom, Medical Internal Radiation Dose (MIRD)-5 phantom. Although stylized phantoms have significantly contributed to dosimetry calculation, they provide only approximations of the true anatomical features of the human body and the resulting organ dose distribution. An alternative class of computational phantom, the tomographic phantom, is based upon three-dimensional imaging techniques such as magnetic resonance (MR) imaging and computed tomography (CT). The tomographic phantoms represent the human anatomy with a large number of voxels that are assigned tissue type and organ identity. To date, a total of around 30 tomographic phantoms including male and female adults, pediatric phantoms, and even a pregnant female, have been developed and utilized for realistic radiation dosimetry calculation. They are based on MRI/CT images or sectional color photos from patients, volunteers or cadavers. Several investigators have compared tomographic phantoms with stylized phantoms, and demonstrated the superiority of tomographic phantoms in terms of realistic anatomy and dosimetry calculation. This paper summarizes the history and current status of both stylized and tomographic phantoms, including Korean computational phantoms. Advantages, limitations, and future prospects are also discussed.

Gross Alpha Analysis of Nasal Smear Samples and Internal Dose Assessment Procedure in Radiation Emergency (방사선비상시 비강스메어 시료의 전알파 분석 및 내부피폭선량평가 절차)

  • Yoon, Seokwon;Ha, Wi-Ho;Kim, Mee-Ryeong;Lee, Seung-Sook
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.4
    • /
    • pp.226-230
    • /
    • 2012
  • The gross alpha analysis of nasal smear samples for the radiation emergency and the additional follow-up steps were established. Cotton swab sticks using in local hospitals for nasal smear in Korea were used for the verification. The measurement results of standard samples spiked with certified reference source were well agreed within ${\pm}20%$ compared with reference values. The clearance ratio of smear samples conducted with wet smear condition showed higher value. To eliminate the quenching effect of liquid scintillation samples, dry of smear samples should be followed up before counting samples. Based on the measurement results, medical decision levels and internal dose assessment were established for the victims in the beginning of radiation emergency.

Dosimetry and Medical Internal Radiation Dose of Re-188-DTPA for Endovascular Balloon Brachytherapy Against Restenosis after Coronary Angioplasty (혈관성형술 후 재협착 방지 치료에 사용하기 위한 원통형 풍선 Re-188-DTPA의 선량 분포와 내부피폭 선량)

  • Lee, Jin;Lee, Dong-Soo;Shin, Seung-Ae;Jeong, Jae-Min;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.33 no.2
    • /
    • pp.163-171
    • /
    • 1999
  • Purpose: Liquid beta emitter filled in angioplasty balloon could be used to perform endovascular balloon brachytherapy to prevent coronary artery restenosis. We investigated the dosimetry for Re-188-DTPA liquid-filled balloon and medical internal radiation dosimetry in case of balloon leakage. Materials and Methods: We estimated radiation dose from an angioplasty balloon (20 mm length, 3 mm diameter cylinder) to the adjacent vessel wall using Monte Carlo EGS4 code. We obtained time-activity curves of kidneys in normal dog and calculated $T_{max},\;T_{1/2}$. Using MIRDOSE3 program, we estimated absorbed doses to the major organs (kidneys, bladder) and the whole body when we assumed that balloon leaked all the isotope contained. Results: The radiation dose was 17.5 Gy at the balloon surface when we applied 3,700 MBq/ml of Re-188 for 100 seconds, Fifty percent of the energy deposited within 1 mm from the balloon surface. The estimated internal dose to the whole body was 0.005 mGy/MBq and 18.5 mGy for the spillage of 3,700 MBq of Re-188. Conclusion: We suggest that Re-188-DTPA can be used for endovascular balloon brachytherapy to inhibit coronary artery restenosis after angioplasty with tolerable whole body radiation dose in case of balloon rupture.

  • PDF

Age-Specific Thyroid Internal Dose Estimation for Koreans

  • Kwon, Tae-Eun;Yoon, Seokwon;Ha, Wi-Ho;Chung, Yoonsun;Jin, Young Woo
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.4
    • /
    • pp.170-177
    • /
    • 2021
  • Background: The International Commission on Radiological Protection is preparing to provide reference dose coefficients for environmental radioiodine intake based on newly developed age-specific biokinetic models. However, the biokinetics of iodine has been reported to be strongly dependent on the dietary intake of stable iodine; for example, the thyroidal uptake of iodine may be substantially lower in iodine-rich regions than in iodine-deficient regions. Therefore, this study attempted to establish a system of age-specific thyroid dose estimation for South Koreans, whose daily iodine intakes are significantly higher than that of the world population. Materials and Methods: Korean age-specific biokinetic parameters and thyroid masses were derived based on the previously developed Korean adult model and the Korean anatomical reference data for adults, respectively. This study complied with the principles used in the development of age-specific biokinetic models for world population and used the ratios of baseline values for each age group relative to the value for adults to derive age-specific values. Results and Discussion: Biokinetic model predictions based on the Korean age-specific parameters showed significant differences in iodine behaviors in the body compared to those predicted using the model for the world population. In particular, the Korean age-specific thyroid dose coefficients for 129I and 131I were considerably lower than those calculated for the world population (25%-76% of the values for the world population). Conclusion: These differences stress the need for Korean-specific internal dose assessments for infants and children, which can be achieved by using the data calculated in this study.

Discrepancies between Calculated and Delivered Dose Distributions of Respiratory Gated IMRT Fields according to the Target Motion Ranges for Lung and Liver Cancer Patients (호흡연동방사선치료시 폐암과 간암환자의 병소 움직임 크기에 따른 선량분포 차이 분석)

  • Kim, Youngkuk;Lim, Sangwook;Choi, Ji Hoon;Ma, Sun Young;Jeung, Tae Sig;Ro, Tae Ik
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.242-247
    • /
    • 2014
  • To see the discrepancies between the calculated and the delivered dose distribution of IMRT fields for respiratory-induced moving target according to the motion ranges. Four IMRT plans in which there are five fields, for lung and liver patients were selected. The gantry angles were set to $0^{\circ}$ for every field and recalculated using TPS (Eclipse Ver 8.1, Varian Medical Systems, Inc., USA). The ion-chamber array detector (MatriXX, IBA Dosimetry, Germany) was placed on the respiratory simulating platform and made it to move with ranges of 1, 2, and 3 cm, respectively. The IMRT fields were delivered to the detector with 30~70% gating windows. The comparison was performed by gamma index with tolerance of 3 mm and 3%. The average pass rate was 98.63% when there's no motion. When 1.0, 2.0, 3.0 cm motion ranges were simulated, the average pass rate were 98.59%, 97.82%, and 95.84%, respectively. Therefore, ITV margin should be increased or gating windows should be decreased for targets with large motion ranges.

An Intercomparison of Counting Efficiency and the Performance of Two Whole-Body Counters According to the Type of Phantom

  • Pak, Minjung;Yoo, Jaeryong;Ha, Wi-Ho;Jin, Young-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.274-281
    • /
    • 2016
  • Background: Whole-body counters are widely used to evaluate internal contamination of the internal presence of gamma-emitting radionuclides. In internal dosimetry, it is a basic requirement that quality control procedures be applied to verify the reliability of the measured results. The implementation of intercomparison programs plays an important role in quality control, and the accuracy of the calibration and the reliability of the results should be verified through intercomparison. In this study, we evaluated the reliability of 2 whole-body counting systems using 2 calibration methods. Materials and Methods: In this study, 2 whole-body counters were calibrated using a reference male bottle manikin absorption (BOMAB) phantom and a Radiation Management Corporation (RMC-II) phantom. The reliability of the whole-body counting systems was evaluated by performing an intercomparison with International Atomic Energy Agencyto assess counting efficiency according to the type of the phantom. Results and Discussion: In the analysis of counting efficiency using the BOMAB phantom, the performance criteria of the counters were satisfied. The relative bias of activity for all radionuclides was -0.16 to 0.01 in the Fastscan and -0.01 to 0.03 in the Accuscan. However, when counting efficiency was analyzed using the RMC- II phantom, the relative bias of $^{241}Am$ activity was -0.49 in the Fastscan and 0.55 in the Accuscan, indicating that its performance criteria was not satisfactory. Conclusion: The intercomparison process demonstrated the reliability of whole-body counting systems calibrated with a BOMAB phantom. However, when the RMC-II phantom was used, the accuracy of measurements decreased for low-energy nuclides. Therefore, it appears that the RMC-II phantom should only be used for efficiency calibration for high-energy nuclides. Moreover, a novel phantom capable of matching the efficiency of the BOMAB phantom in low-energy nuclides should be developed.

Adjuvant Radiotherapy after Breast Conserving Treatment for Breast Cancer:A Dosimetric Comparison between Volumetric Modulated Arc Therapy and Intensity Modulated Radiotherapy

  • Liu, Zhe-Ming;Ge, Xiao-Lin;Chen, Jia-Yan;Wang, Pei-Pei;Zhang, Chi;Yang, Xi;Zhu, Hong-Cheng;Liu, Jia;Qin, Qin;Xu, Li-Ping;Lu, Jing;Zhan, Liang-Liang;Cheng, Hong-Yan;Sun, Xin-Chen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.8
    • /
    • pp.3257-3265
    • /
    • 2015
  • Background: Radiotherapy is an important treatment of choice for breast cancer patients after breast-conserving surgery, and we compare the feasibility of using dual arc volumetric modulated arc therapy (VMAT2), single arc volumetric modulated arc therapy (VMAT1) and Multi-beam Intensity Modulated Radiotherapy (M-IMRT) on patients after breast-conserving surgery. Materials and Methods: Thirty patients with breast cancer (half right-sided and half left-sided) treated by conservative lumpectomy and requiring whole breast radiotherapy with tumor bed boost were planned with three different radiotherapy techniques: 1) VMAT1; 2) VMAT2; 3) M-IMRT. The distributions for the planning target volume (PTV) and organs at risk (OARs) were compared. Dosimetries for all the techniques were compared. Results: All three techniques satisfied the dose constraint well. VMAT2 showed no obvious difference in the homogeneity index (HI) and conformity index (CI) of the PTV with respect to M-IMRT and VMAT1. VMAT2 clearly improved the treatment efficiency and can also decrease the mean dose and V5Gy of the contralateral lung. The mean dose and maximum dose of the spinal cord and contralateral breast were lower for VMAT2 than the other two techniques. The very low dose distribution (V1Gy) of the contralateral breast also showed great reduction in VMAT2 compared with the other two techniques. For the ipsilateral lung of right-sided breast cancer, the mean dose was decreased significantly in VMAT2 compared with VMAT1 and M-IMRT. The V20Gy and V30Gy of the ipsilateral lung of the left-sided breast cancer for VMAT2 showed obvious reduction compared with the other two techniques. The heart statistics of VMAT2 also decreased considerably compared to VMAT1 and M-IMRT. Conclusions: Compared to the other two techniques, the dual arc volumetric modulated arc therapy technique reduced radiation dose exposure to the organs at risk and maintained a reasonable target dose distribution.

'Simultaneous Modulated Accelerated Radiation Therapy' (SMART) Intensity-Modulated Radiotherapy in the Treatment of Nasopharyngeal Carcinoma : the Asan Medical Center (비인강암의 세기조절방사선치료기술을 이용한 동시차등조사가속치료의 예비성적)

  • Lee Sang-Wook;Back Geum-Mun;Yi Byong-Yong;Choi Eun-Kyung;Kim Jong-Hoon;Ahn Seung-Do;Shin Seong-Soo;Kim Sang-Yoon;Nam Soon-Yuhl;Choi Seung-Ho;Kim Sung-Bae;Song Si-Yeol
    • Korean Journal of Head & Neck Oncology
    • /
    • v.19 no.1
    • /
    • pp.9-15
    • /
    • 2003
  • Purpose: To introduce our early experience with intensity-modulated radiotherapy (IMRT) in the treatment of nasopharyngeal carcinoma. Methods and Materials: Eight patients who underwent IMRT for no disseminated nasopharyngeal carcinoma at the Asan Medical Center between September 2001 and November 2002 were evaluate by prospective analysis. According to the 1997 American Joint Committee on Cancer staging classification, 5 had Stage III, and 3 had Stage IVB disease. The IMRT plans were designed to be delivered as a 'Simultaneous Modulated Accelerated Radiation Therapy' (SMART) using the 'step and shoot' technique with a MLC (multileaf collimator). Daily fractions of 2.2-2.5Gy and 1.9-2Gy were prescribed and delivered to the GTV and CTV and clinically negative neck node, respectively. The prescribed dose was 70A-79.0Gy to the gross tumor volume (GTV), 60Gy to the clinical target volume (CTV) and metastatic nodal station, and 46Gy to the clinically negative neck. All patients also received weekly cisplatin during radiotherapy. Acute and late normal tissue effects were graded according to the Radiation Therapy Oncology Group (RTOG) radiation morbidity scoring criteria. Results: Follow-up period was ranging from 5 to 18 months. All patients showed complete response and loco-regional control rate was 100% but one patient died of malnutrition due to treatment related toxicity. There were no Grade 3 or 4 xerostomia and all patients had experienced improvement of salivary gland function. Conclusion: 'Simultaneous Modulated Accelerated Radiation Therapy' (SMART) boost intensity-modulated radiotherapy technique allows parotid sparing as evidenced both clinically and by dosimetry. Initial tumor response and loco-regional control was promising. It is clinically feasible. A larger population of patients and a long-term follow-up are needed to evaluate ultimate tumor control and late toxicity.

Nuclear Medicine Physics: Review of Advanced Technology

  • Oh, Jungsu S.
    • Progress in Medical Physics
    • /
    • v.31 no.3
    • /
    • pp.81-98
    • /
    • 2020
  • This review aims to provide a brief, comprehensive overview of advanced technologies of nuclear medicine physics, with a focus on recent developments from both hardware and software perspectives. Developments in image acquisition/reconstruction, especially the time-of-flight and point spread function, have potential advantages in the image signal-to-noise ratio and spatial resolution. Modern detector materials and devices (including lutetium oxyorthosilicate, cadmium zinc tellurium, and silicon photomultiplier) as well as modern nuclear medicine imaging systems (including positron emission tomography [PET]/computerized tomography [CT], whole-body PET, PET/magnetic resonance [MR], and digital PET) enable not only high-quality digital image acquisition, but also subsequent image processing, including image reconstruction and post-reconstruction methods. Moreover, theranostics in nuclear medicine extend the usefulness of nuclear medicine physics far more than quantitative image-based diagnosis, playing a key role in personalized/precision medicine by raising the importance of internal radiation dosimetry in nuclear medicine. Now that deep-learning-based image processing can be incorporated in nuclear medicine image acquisition/processing, the aforementioned fields of nuclear medicine physics face the new era of Industry 4.0. Ongoing technological developments in nuclear medicine physics are leading to enhanced image quality and decreased radiation exposure as well as quantitative and personalized healthcare.