• Title/Summary/Keyword: medical internal radiation dosimetry

Search Result 31, Processing Time 0.02 seconds

Internal Radiation Dosimetry in Radionuclide Therapy (방사성핵종을 이용한 치료에서 흡수선량의 평가)

  • Kim, Kyeong-Min;Lim, Sang-Moo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.2
    • /
    • pp.120-126
    • /
    • 2006
  • Radionuclide therapy has been continued for treatment of incurable diseases for past decades. Relevant evaluation of absorbed dose in radionuclide therapy is important to predict treatment output and essential for making treatment planning to prevent unexpected radiation toxicity. Many scientists in the field related with nuclear medicine have made effort to evolve concept and technique for internal radiation dosimetry in this review, basic concept of internal radiation dosimetry is described and recent progress in method for dosimetry is introduced.

Medical Application of Radiation Internal Dosimetry (방사선 내부흡수선량의 의학적 적용)

  • Kim, Kyeong-Min;Lim, Sang-Moo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.2
    • /
    • pp.164-171
    • /
    • 2008
  • Medical internal radiation dosimetry (MIRD) is an important part of nuclear medicine research field using therapeutic radioisotope. There have been many researches using MIRD for the development of new therapeutic approaches including radiopharmaceutical, clinical protocol, and imaging techniques. Recently, radionuclide therapy has been re-focused as new solution of intractable diseases, through to the advances of previous achievements. In this article, the basic concepts of radiation and internal radiation dosimetry are summarized to help understanding MIRD and its application to clinical application.

Internal Dosimetry: State of the Art and Research Needed

  • Francois Paquet
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.4
    • /
    • pp.181-194
    • /
    • 2022
  • Internal dosimetry is a discipline which brings together a set of knowledge, tools and procedures for calculating the dose received after incorporation of radionuclides into the body. Several steps are necessary to calculate the committed effective dose (CED) for workers or members of the public. Each step uses the best available knowledge in the field of radionuclide biokinetics, energy deposition in organs and tissues, the efficiency of radiation to cause a stochastic effect, or in the contributions of individual organs and tissues to overall detriment from radiation. In all these fields, knowledge is abundant and supported by many works initiated several decades ago. That makes the CED a very robust quantity, representing exposure for reference persons in reference situation of exposure and to be used for optimization and assessment of compliance with dose limits. However, the CED suffers from certain limitations, accepted by the International Commission on Radiological Protection (ICRP) for reasons of simplification. Some of its limitations deserve to be overcome and the ICRP is continuously working on this. Beyond the efforts to make the CED an even more reliable and precise tool, there is an increasing demand for personalized dosimetry, particularly in the medical field. To respond to this demand, currently available tools in dosimetry can be adjusted. However, this would require coupling these efforts with a better assessment of the individual risk, which would then have to consider the physiology of the persons concerned but also their lifestyle and medical history. Dosimetry and risk assessment are closely linked and can only be developed in parallel. This paper presents the state of the art of internal dosimetry knowledge and the limitations to be overcome both to make the CED more precise and to develop other dosimetric quantities, which would make it possible to better approximate the individual dose.

A Review of Organ Dose Calculation Methods and Tools for Patients Undergoing Diagnostic Nuclear Medicine Procedures

  • Choonsik Lee
    • Journal of Radiation Protection and Research
    • /
    • v.49 no.1
    • /
    • pp.1-18
    • /
    • 2024
  • Exponential growth has been observed in nuclear medicine procedures worldwide in the past decades. The considerable increase is attributed to the advance of positron emission tomography and single photon emission computed tomography, as well as the introduction of new radiopharmaceuticals. Although nuclear medicine procedures provide undisputable diagnostic and therapeutic benefits to patients, the substantial increase in radiation exposure to nuclear medicine patients raises concerns about potential adverse health effects and calls for the urgent need to monitor exposure levels. In the current article, model-based internal dosimetry methods were reviewed, focusing on Medical Internal Radiation Dose (MIRD) formalism, biokinetic data, human anatomy models (stylized, voxel, and hybrid computational human phantoms), and energy spectrum data of radionuclides. Key results from many articles on nuclear medicine dosimetry and comparisons of dosimetry quantities based on different types of human anatomy models were summarized. Key characteristics of seven model-based dose calculation tools were tabulated and discussed, including dose quantities, computational human phantoms used for dose calculations, decay data for radionuclides, biokinetic data, and user interface. Lastly, future research needs in nuclear medicine dosimetry were discussed. Model-based internal dosimetry methods were reviewed focusing on MIRD formalism, biokinetic data, human anatomy models, and energy spectrum data of radionuclides. Future research should focus on updating biokinetic data, revising energy transfer quantities for alimentary and gastrointestinal tracts, accounting for body size in nuclear medicine dosimetry, and recalculating dose coefficients based on the latest biokinetic and energy transfer data.

Optimal Monitoring Intervals and MDA Requirements for Routine Individual Monitoring of Occupational Intakes Based on the ICRP OIR

  • Ha, Wi-Ho;Kwon, Tae-Eun;Jin, Young Woo
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.2
    • /
    • pp.88-94
    • /
    • 2020
  • Background: The International Commission on Radiological Protection (ICRP) has recently published report series on the occupational intakes of radionuclides (OIR) for internal dosimetry of radiation workers. In this study, the optimized monitoring program including the monitoring interval and the minimum detectable activity (MDA) of major radionuclides was suggested to perform the routine individual monitoring of internal exposure based on the ICRP OIR. Materials and Methods: The derived recording levels and the critical monitoring quantities were reviewed from international standards or guidelines by the International Atomic Energy Agency (IAEA), the International Organization for Standardization (ISO), and the European Radiation Dosimetry Group (EURADOS). The OIR data viewer provided by ICRP was used to evaluate the monitoring intervals and the MDA, which are derived from the reference bioassay functions and the dose coefficients. Results and Discussion: The optimal monitoring intervals were determined taking account of two requirement conditions on the potential intake underestimation and the MDA values. The MDA requirement values of the selected radionuclides were calculated based on the committed effective dose from 0.1 mSv to 5 mSv. The optimized routine individual monitoring program was suggested including the optimal monitoring intervals and the MDA requirements. The optimal MDA values were evaluated based on the committed effective dose of 0.1 mSv. However, the MDA can be adjusted considering the practical operation of the routine individual monitoring program in the nuclear facilities. Conclusion: The monitoring intervals and the MDA as crucial factors for the routine monitoring were described to suggest the optimized routine individual monitoring program of the occupational intakes. Further study on the alpha/beta-emitting radionuclides as well as short lived gamma-emitting nuclides will be necessary in the future.

Internal Radiation Dosimetry using Nuclear Medicine Imaging in Radionuclide Therapy (방사성핵종 이용 치료에서 핵의학영상을 이용한 흡수선량평가)

  • Kim, Kyeong-Min;Byun, Byun-Hyun;Cheon, Gi-Jeong;Lim, Sang-Moo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.4
    • /
    • pp.265-271
    • /
    • 2007
  • Radionuclide therapy has been an important field in nuclear medicine. In radionuclide therapy, relevant evaluation of Internally absorbed dose is essential for the achievement of efficient and sufficient treatment of incurable disease, and can be accomplish by means of accurate measurement of radioactivity in body and its changes with time. Recently, the advances of nuclear medicine imaging and multi modality imaging processing techniques can provide change of more accurate and easier measurement of the measures commented above, in cooperation of conventional imaging based approaches. in this review, basic concept for internal dosimetry using nuclear medicine imaging is summarized with several check points which should be considered In real practice.

Are Medical Personnel Safe from Radiation Exposure from Patient Receiving Radioiodine Ablation Therapy? (갑상선 암의 방사성요오드 치료 시 의료진은 방사선 피폭으로부터 안전한가?)

  • Kim, Chang-Guhn;Kim, Dae-Weung
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.4
    • /
    • pp.259-279
    • /
    • 2009
  • Radioiodine ablation therapy has been considered to be a standard treatment for patient with differentiated thyroid cancer after total thyroidectomy. Patients may need to be hospitalized to reduce radiation exposure of other people and relatives from radioactive patients receiving radioiodine therapy. Medical staffs, nursing staffs and technologists sometimes hesitate to contact patients in radioiodine therapy ward. The purpose of this paper is to introduce radiation dosimetry, estimate radiation dose from patients and emphasize the safety of radiation exposure from patients treated with high dose radioiodine in therapy ward. The major component of radiation dose from patient is external exposure. However external radiation dose from these patients treated with typical therapeutic dose of 4 to 8 GBq have a very low risk of cancer induction compared with other various risks occurring in daily life. The typical annual radiation dose without shielding received by patient is estimated to be 5 to 10 mSv, which is comparable with 100 to 200 times effective dose received by chest PA examination. Therefore, when we should keep in mind the general principle of radiation protection, the risks of radiation exposure from patients are low and the medical personnel are considered to be safe from radiation exposure.

Cytogenetic and Medical Examination Report of Accidental Exposure of Nuclear Power Plant Worker using Multiple Assays (원자력 발전소 피폭자 건강영향평가 사례보고)

  • Lee, Jung-Eun;Yang, Kwang-Hee;Jang, Yun-Kun;Jeong, Mee-Seon;Kim, Chong-Soon;Jin, Young-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.32 no.3
    • /
    • pp.111-115
    • /
    • 2007
  • A deuterium oxide leakage accident occurred on October 4, 1999, at nuclear power plant in Korea. The concentration of tritium in air increased and 22 workers were exposed by tritium at that time. It is well known that tritium causes internal exposure. Therefore, we examined complete blood cell count, physical and biological dosimetry fur 13 workers among whole 22 workers to check the health effect and to evaluate the dose estimation of tritium exposure. The leukocyte count test, one of general blood test, was normal. The estimated doses were 0 - 4.44 mSv by physical dosimetry and 0-37 mGy by biological dosimetry. This dose does not exceed radiation dose limit, and the clinical symptoms of the exposed workers were not shown. The consistency between clinical sign and estimated dose means that physical and biological dosimetry were very useful especially in accident evaluation.

Total Body Irradiation Technique : Basic Data Measurements and In Vivo Dosimetry (방사선 전신 조사 : 기본 자료 측정 및 생체내에서 선량 측정)

  • Choi Dong-Rak;Choi Ihl Bohng;Kang Ki Mun;Shinn Kyung Sub;Kim Choon Choo
    • Radiation Oncology Journal
    • /
    • v.12 no.2
    • /
    • pp.219-223
    • /
    • 1994
  • This paper describes the basic data measurements for total body irradiation with 6 Mv photon beam including compensators design. The technique uses bilateral opposing fields with tissue compensators for the head, neck, lungs, and legs from the hip to toes. In vivo dosimetry was carried out for determining absorbed dose at various regions in 7 patients using diode detectors(MULTIDOSE,k Model 9310, MULTIDATA Co., USA). As a results, the dose uniformity of${\pm}3.5{\%}$(generally, within${\pm}10{\%}$can be achieved with out total body irradiation technique.

  • PDF

Performance test of urine bioassay through participation in the NRIP (NRIP 참여를 통한 소변시료 바이오어세이 성능검사)

  • Ha, Wi-Ho;Yoo, Jaeryong;Yoon, Seokwon;Lee, Seung-Sook;Kim, Jong Kyoung
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.2
    • /
    • pp.96-102
    • /
    • 2014
  • Urine bioassay has been widely used for internal dosimetry due to simple process of sampling and measurement. In this paper, we participated in the NRIP (NIST Radiochemistry Intercomparison Program) hosted by US NIST to carry out a reliable performance test of urine bioassay and introduced the measurement method and results of NRIP-2013. In customary exercise with 60 days of reporting time, bioassay results of 12 radionuclides in the synthetic urine samples were acceptable based on the performance criteria of ANSI N13.30. In emergency preparedness exercise with 8 hours of reporting time, bioassay results of 9 radionuclides showed that differences ranged from -35% to 45%. However, we concluded that urine bioassay applied for emergency preparedness exercise would be applicable for rapid screening and estimation of internal exposure within a difference of ${\pm}45%$ in the event of radiological accidents.