Internal Radiation Dosimetry in Radionuclide Therapy

방사성핵종을 이용한 치료에서 흡수선량의 평가

  • Kim, Kyeong-Min (Nuclear Medicine Laboratory, Radiological and Medical Sciences Research Center, Korea Institute of Radiological and Medical Sciences) ;
  • Lim, Sang-Moo (Nuclear Medicine Laboratory, Radiological and Medical Sciences Research Center, Korea Institute of Radiological and Medical Sciences)
  • 김경민 (원자력의학원 방사선의학연구센터 핵의학연구실) ;
  • 임상무 (원자력의학원 방사선의학연구센터 핵의학연구실)
  • Published : 2006.04.29

Abstract

Radionuclide therapy has been continued for treatment of incurable diseases for past decades. Relevant evaluation of absorbed dose in radionuclide therapy is important to predict treatment output and essential for making treatment planning to prevent unexpected radiation toxicity. Many scientists in the field related with nuclear medicine have made effort to evolve concept and technique for internal radiation dosimetry in this review, basic concept of internal radiation dosimetry is described and recent progress in method for dosimetry is introduced.

Keywords

References

  1. Loevinger R, Budinger TF, Watson EE. MIRD primer for absorbed dose calculation. New York: The Society of Nuclear Medicine; 1988
  2. Macey DJ, williams LE, Breitz HB. Liu A, Johnson TK, Zanzonico PB. AAPM report No. 17: a primer for radioimmunotherapy and radionuclide therapy. American Association of Physicists in Medicine; 2001
  3. Macey DJ, williams LE, Breitz HB. Liu A, Johnson TK, Zanzonico PB. AAPM report No. 17: a primer for radioimmunotherapy and radionuclide therapy. American Association of Physicists in Medicine; 2001
  4. 김은실, 김종순, 김은희. 방사선 안전관리. 고창순 편저. 핵의학. 제2판. 서울: 고려의학; 1997. p. 235-251
  5. 임상무, 홍성운. 방사성의약품 치료. 고창순 편저. 핵의학. 제2판. 서울: 고려의학; 1997. p.767-798
  6. Zanzonico PB, Brill AB, Becker DV. Radiation Dosimetry. In: Wagner Jr HN, Szabo Z, Buchanan JW editors. Priciples of Nuclear Medicine. 2nd ed. Philadelphia: W.B.Saunders Company; 1995. p. 106-134
  7. Internal radiation dosimetry. In: Cherry SR, Sorenson JA, Phelps ME. editors. Physics in Nuclear Medicine. 3rd ed. Philadelphia: Saunders; 2003. p.405-425
  8. Sgouros G. Dosimetry of internal emitters. J Nucl Med 2005;46:18S-27S
  9. Siegel JA, Thomas SR, Stubbs JB, Stabin MG, Hays MT, Koral KF, et al. MIRD pamphlet no. 16: techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. J Nucl Med 1999;40:37S-61S
  10. Bolch WE, Bouchet LG, Robertson JS, Wessels BW, Siegel JA, Howell RW, et al. MIRD pamphlet No. 17: the dosimetry of nonuniform activity distributions--radionuclide S values at the voxel level. Medical Internal Radiation Dose Committee. J Nucl Med 1999;40:11S-36S
  11. Stabin MG. MIRDOSE: personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 1996;37:538-46
  12. Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second- generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 2005;46:1023-7
  13. Turner JH, Martindale AA, Boucek J, Claringbold PG, Leahy MF. $^{131}$I-Anti CD20 radioimmunotherapy of relapsed or refractory non-Hodgkins lymphoma: a phase II clinical trial of a nonmyeloablative dose regimen of chimeric rituximab radiolabeled in a hospital. Cancer Biother Radiopharm 2003;18:513-24 https://doi.org/10.1089/108497803322287583
  14. Wiseman GA, Kornmehl E, Leigh B, Erwin WD, Podoloff DA, Spies S, et al. Radiation dosimetry results and safety correlations from $^{90}$Y-ibritumomab tiuxetan radioimmunotherapy for relapsed or refractory non-Hodgkin's lymphoma: combined data from 4 clinical trials. J Nucl Med 2003;44: 465-74
  15. Dewaraja YK, Ljungberg M, Koral KF. Accuracy of $^{131}$I tumor quantification in radioimmunotherapy using SPECT imaging with an ultra-high-energy collimator: Monte Carlo study. J Nucl Med 2000;41:1760-7
  16. Delpon G, Ferrer L, Lenta C, Lisbona A, Buvat I, Bardies M. Comparison of four scatter correction methods for patient whole-body imaging during therapeutic trials with iodine-131. Cancer 2002 Feb 15;94:1224-30 https://doi.org/10.1002/cncr.10289
  17. Zaidi H, Koral KF. Scatter modelling and compensation in emission tomography. Eur J Nucl Med Mol Imaging 2004;31:761-82 https://doi.org/10.1007/s00259-004-1495-z
  18. Leichner PK, Koral KF, Jaszczak RJ, Green AJ, Chen GT, Roeske JC. An overview of imaging techniques and physical aspects of treatment planning in radioimmunotherapy. Med Phys 1993;20:569-77 https://doi.org/10.1118/1.597051
  19. Dewaraja YK, Ljungberg M, Koral KF. Monte Carlo evaluation of object shape effects in iodine-131 SPET tumor activity quantification. Eur J Nucl Med 2001;28:900-6 https://doi.org/10.1007/s002590100551
  20. Dewaraja YK, Ljungberg M, Koral KF. Characterization of scatter and penetration using Monte Carlo simulation in $^{131}$I imaging. J Nucl Med 2000;41:123-30
  21. Macey DJ, Grant EJ, Bayouth JE, Giap HB, Danna SJ, Sirisriro R, Podoloff DA. Improved conjugate view quantitation of I-131 by subtraction of scatter and septal penetration events with a triple energy window method. Med Phys 1995;22:1637-43 https://doi.org/10.1118/1.597423
  22. Koral KF, Zasadny KR, Ackermann RJ, Ficaro EP. Deadtime correction for two multihead Anger cameras in $^{131}$I dual-energy- window-acquisition mode. Med Phys 1998;25: 85-91 https://doi.org/10.1118/1.598162
  23. Rajendran JG, Fisher DR, Gopal AK, Durack LD, Press OW, Eary JF. High-dose $^{131}$I-tositumomab (anti-CD20) radioimmunotherapy for non-Hodgkin's lymphoma: adjusting radiation absorbed dose to actual organ volumes. J Nucl Med 2004;45:1059-64
  24. Behr TM, Griesinger F, Riggert J, Gratz S, Behe M, Kaufmann CC, et al. High-dose myeloablative radioimmunotherapy of mantle cell non-Hodgkin lymphoma with the iodine-131-labeled chimeric anti-CD20 antibody C2B8 and autologous stem cell support. Results of a pilot study. Cancer 2002;94:1363-72 https://doi.org/10.1002/cncr.10307
  25. Menzel C, Grunwald F, Schomburg A, Palmedo H, Bender H, Spath G, et al. 'High-dose' radioiodine therapy in advanced differentiated thyroid carcinoma. J Nucl Med 1996;37:1496-503
  26. Mayer A, Tsiompanou E, Flynn AA, Pedley RB, Dearling J, Boden R, et al. Higher dose and dose-rate in smaller tumors result in improved tumor control. Cancer Invest 2003;21:382-8 https://doi.org/10.1081/CNV-120018229
  27. DeNardo SJ, Williams LE, Leigh BR, Wahl RL. Choosing an optimal radioimmunotherapy dose for clinical response. Cancer 2002;94:1275-86 https://doi.org/10.1002/cncr.10297
  28. Erwin WD, Groch MW, Macey DJ, DeNardo GL, DeNardo SJ, Shen S. A radioimmunoimaging and MIRD dosimetry treatment planning program for radioimmunotherapy. Nucl Med Biol 1996;23:525-32 https://doi.org/10.1016/0969-8051(96)00036-4
  29. Zanzonico P, Sgouros G. Predicting myelotoxicity in radioimmunotherapy: what does dosimetry contribute- J Nucl Med 1997;38:1753-4
  30. Wahl RL, Kroll S, Zasadny KR. Patient-specific whole-body dosimetry: principles and a simplified method for clinical implementation. J Nucl Med 1998;39:14S-20S
  31. Furhang EE, Chui CS, Kolbert KS, Larson SM, Sgouros G. Implementation of a Monte Carlo dosimetry method for patient-specific internal emitter therapy. Med Phys 1997;24: 1163-72 https://doi.org/10.1118/1.598018
  32. Yoriyaz H, Stabin MG, dos Santos A. Monte Carlo MCNP-4B-based absorbed dose distribution estimates for patient-specific dosimetry. J Nucl Med 2001;42:662-9
  33. Furhang EE, Chui CS, Sgouros G. A Monte Carlo approach to patient-specific dosimetry. Med Phys 1996;23:1523-9 https://doi.org/10.1118/1.597882
  34. Kolbert KS, Sgouros G, Scott AM, Bronstein JE, Malane RA, Zhang J, et al. Implementation and evaluation of patient-specific three-dimensional internal dosimetry. J Nucl Med 1997;38:301-8
  35. Sgouros G. Bone marrow dosimetry for radioimmunotherapy: theoretical considerations. J Nucl Med 1993;34:689-94
  36. Shen S, DeNardo GL, Sgouros G, O'Donnell RT, DeNardo SJ. Practical determination of patient-specific marrow dose using radioactivity concentration in blood and body. J Nucl Med 1999;40:2102-6
  37. Wessels BW, Bolch WE, Bouchet LG, Breitz HB, Denardo GL, Meredith RF, et al. Bone marrow dosimetry using blood-based models for radiolabeled antibody therapy: a multiinstitutional comparison. J Nucl Med 2004;45:1725-33
  38. Behr TM, Behe M, Sgouros G. Correlation of red marrow radiation dosimetry with myelotoxicity: empirical factors influencing the radiation-induced myelotoxicity of radiolabeled antibodies, fragments and peptides in pre-clinical and clinical settings. Cancer Biother Radiopharm 2002;17:445-64 https://doi.org/10.1089/108497802760363231
  39. Sgouros G, Stabin M, Erdi Y, Akabani G, Kwok C, Brill AB, et al. Red marrow dosimetry for radiolabeled antibodies that bind to marrow, bone, or blood components. Med Phys 2000;27:2150-64 https://doi.org/10.1118/1.1288393
  40. Siegel JA, Pawlyk DA, Lee RE, Sasso NL, Horowitz JA, Sharkey RM, et al. Tumor, red marrow, and organ dosimetry for $^{131}$I-labeled anti-carcinoembryonic antigen monoclonal antibody. Cancer Res 1990;50:1039S-1042S
  41. Macey DJ, DeNardo SJ, DeNardo GL, DeNardo DA, Shen S. Estimation of radiation absorbed doses to the red marrow in radioimmunotherapy. Clin Nucl Med 1995;20:117-25 https://doi.org/10.1097/00003072-199502000-00005
  42. Boucek JA, Turner JH. Validation of prospective whole-body bone marrow dosimetry by SPECT/CT multimodality imaging in $^{131}$I-anti-CD20 rituximab radioimmunotherapy of non-Hodgkin's lymphoma. Eur J Nucl Med Mol Imaging 2005;32:458-69 https://doi.org/10.1007/s00259-004-1692-9
  43. Zanzonico PB, Bigler RE, Sgouros G, Strauss A. Quantitative SPECT in radiation dosimetry. Semin Nucl Med 1989;19:47-61 https://doi.org/10.1016/S0001-2998(89)80035-2
  44. Sgouros G, Barest G, Thekkumthala J, Chui C, Mohan R, Bigler RE, et al. Treatment planning for internal radionuclide therapy: three-dimensional dosimetry for nonuniformly distributed radionuclides. J Nucl Med 1990;31:1884-91
  45. Sgouros G, Chiu S, Pentlow KS, Brewster LJ, Kalaigian H, Baldwin B, et al. Three-dimensional dosimetry for radioimmunotherapy treatment planning. J Nucl Med 1993;34:1595- 601
  46. Koral KF, Lin S, Fessler JA, Kaminski MS, Wahl RL. Preliminary results from intensity-based CT-SPECT fusion in I-131 anti-B1 monoclonal-antibody therapy of lymphoma. Cancer 1997;80:2538-44 https://doi.org/10.1002/(SICI)1097-0142(19971215)80:12+<2538::AID-CNCR28>3.0.CO;2-C
  47. Koral KF, Zasadny KR, Kessler ML, Luo JQ, Buchbinder SF, Kaminski MS, et al. CT-SPECT fusion plus conjugate views for determining dosimetry in iodine-131-monoclonal antibody therapy of lymphoma patients. J Nucl Med 1994; 35:1714-20
  48. Ljungberg M, Sjogreen K, Liu X, Frey E, Dewaraja Y, Strand SE. A 3-dimensional absorbed dose calculation method based on quantitative SPECT for radionuclide therapy: evaluation for $^{131}$I using monte carlo simulation. J Nucl Med 2002;43:1101-9
  49. Sgouros G, Squeri S, Ballangrud AM, Kolbert KS, Teitcher JB, Panageas KS, et al. Patient-specific, 3-dimensional dosimetry in non-Hodgkin's lymphoma patients treated with $^{131}$I-anti-B1 antibody: assessment of tumor dose-response. J Nucl Med 2003;44:260-8
  50. Sjogreen K, Ljungberg M, Strand SE. An activity quantification method based on registration of CT and whole-body scintillation camera images, with application to $^{131}$I. J Nucl Med 2002;43:972-82
  51. Koral KF, Dewaraja Y, Li J, Lin Q, Regan DD, Zasadny KR, et al. Update on hybrid conjugate-view SPECT tumor dosimetry and response in $^{131}$I-tositumomab therapy of previously untreated lymphoma patients. J Nucl Med 2003; 44:457-64
  52. Koral KF, Yendiki A, Lin Q, Dewaraja YK, Fessler JA. Determining total I-131 activity within a VoI using SPECT, a UHE collimator, OSEM, and a constant conversion factor. IEEE Trans Nucl Sci 2004;51:611-8 https://doi.org/10.1109/TNS.2004.829605
  53. Tagesson M, Ljungberg M, Strand SE. A Monte-Carlo program converting activity distributions to absorbed dose distributions in a radionuclide treatment planning system. Acta Oncol 1996;35:367-72 https://doi.org/10.3109/02841869609101653
  54. Gardin I, Bouchet LG, Assie K, Caron J, Lisbona A, Ferrer L, et al. Voxeldoes: a computer program for 3-D dose calculation in therapeutic nuclear medicine. Cancer Biother Radiopharm 2003;18:109-15 https://doi.org/10.1089/108497803321269386
  55. Sjogreen K, Ljungberg M, Wingardh K, Minarik D, Strand SE. The LundADose method for planar image activity quantification and absorbed-dose assessment in radionuclide therapy. Cancer Biother Radiopharm 2005;20:92-7 https://doi.org/10.1089/cbr.2005.20.92
  56. Dewaraja YK, Wilderman SJ, Ljungberg M, Koral KF, Zasadny K, Kaminiski MS. Accurate dosimetry in $^{131}$I radionuclide therapy using patient-specific, 3-dimensional methods for SPECT reconstruction and absorbed dose calculation. J Nucl Med 2005;46:840-9