• 제목/요약/키워드: medical image classification

검색결과 171건 처리시간 0.027초

CT영상에서의 AlexNet과 VggNet을 이용한 간암 병변 분류 연구 (Malignant and Benign Classification of Liver Tumor in CT according to Data pre-processing and Deep running model)

  • 최보혜;김영재;최승준;김광기
    • 대한의용생체공학회:의공학회지
    • /
    • 제39권6호
    • /
    • pp.229-236
    • /
    • 2018
  • Liver cancer is one of the highest incidents in the world, and the mortality rate is the second most common disease after lung cancer. The purpose of this study is to evaluate the diagnostic ability of deep learning in the classification of malignant and benign tumors in CT images of patients with liver tumors. We also tried to identify the best data processing methods and deep learning models for classifying malignant and benign tumors in the liver. In this study, CT data were collected from 92 patients (benign liver tumors: 44, malignant liver tumors: 48) at the Gil Medical Center. The CT data of each patient were used for cross-sectional images of 3,024 liver tumors. In AlexNet and VggNet, the average of the overall accuracy at each image size was calculated: the average of the overall accuracy of the $200{\times}200$ image size is 69.58% (AlexNet), 69.4% (VggNet), $150{\times}150$ image size is 71.54%, 67%, $100{\times}100$ image size is 68.79%, 66.2%. In conclusion, the overall accuracy of each does not exceed 80%, so it does not have a high level of accuracy. In addition, the average accuracy in benign was 90.3% and the accuracy in malignant was 46.2%, which is a significant difference between benign and malignant. Also, the time it takes for AlexNet to learn is about 1.6 times faster than VggNet but statistically no different (p > 0.05). Since both models are less than 90% of the overall accuracy, more research and development are needed, such as learning the liver tumor data using a new model, or the process of pre-processing the data images in other methods. In the future, it will be useful to use specialists for image reading using deep learning.

알약 자동 인식을 위한 딥러닝 모델간 비교 및 검증 (Comparison and Verification of Deep Learning Models for Automatic Recognition of Pills)

  • 이경윤;김영재;김승태;김효은;김광기
    • 한국멀티미디어학회논문지
    • /
    • 제22권3호
    • /
    • pp.349-356
    • /
    • 2019
  • When a prescription change occurs in the hospital depending on a patient's improvement status, pharmacists directly classify manually returned pills which are not taken by a patient. There are hundreds of kinds of pills to classify. Because it is manual, mistakes can occur and which can lead to medical accidents. In this study, we have compared YOLO, Faster R-CNN and RetinaNet to classify and detect pills. The data consisted of 10 classes and used 100 images per class. To evaluate the performance of each model, we used cross-validation. As a result, the YOLO Model had sensitivity of 91.05%, FPs/image of 0.0507. The Faster R-CNN's sensitivity was 99.6% and FPs/image was 0.0089. The RetinaNet showed sensitivity of 98.31% and FPs/image of 0.0119. Faster RCNN showed the best performance among these three models tested. Thus, the most appropriate model for classifying pills among the three models is the Faster R-CNN with the most accurate detection and classification results and a low FP/image.

Classification of White Blood Cell Using Adaptive Active Contour

  • Theerapattanakul, J.;Plodpai, J.;Mooyen, S.;Pintavirooj, C.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1889-1891
    • /
    • 2004
  • The differential white blood cell count plays an important role in the diagnosis of different diseases. It is a tedious task to count these classes of cell manually. An automatic counter using computer vision helps to perform this medical test rapidly and accurately. Most commercial-available automatic white blood cell analysis composed mainly 3 steps including segmentation, feature extraction and classification. In this paper we concentrate on the first step in automatic white-blood-cell analysis by proposing a segmentation scheme that utilizes a benefit of active contour. Specifically, the binary image is obtained by thresolding of the input blood smear image. The initial shape of active is then placed roughly inside the white blood cell and allowed to grow to fit the shape of individual white blood cell. The white blood cell is then separated using the extracted contour. The force that drives the active contour is the combination of gradient vector flow force and balloon force. Our purposed technique can handle very promising to separate the remaining red blood cells.

  • PDF

딥러닝을 위한 마스크 착용 유형별 데이터셋 구축 및 검출 모델에 관한 연구 (The Study for Type of Mask Wearing Dataset for Deep learning and Detection Model)

  • 황호성;김동현;김호철
    • 대한의용생체공학회:의공학회지
    • /
    • 제43권3호
    • /
    • pp.131-135
    • /
    • 2022
  • Due to COVID-19, Correct method of wearing mask is important to prevent COVID-19 and the other respiratory tract infections. And the deep learning technology in the image processing has been developed. The purpose of this study is to create the type of mask wearing dataset for deep learning models and select the deep learning model to detect the wearing mask correctly. The Image dataset is the 2,296 images acquired using a web crawler. Deep learning classification models provided by tensorflow are used to validate the dataset. And Object detection deep learning model YOLOs are used to select the detection deep learning model to detect the wearing mask correctly. In this process, this paper proposes to validate the type of mask wearing datasets and YOLOv5 is the effective model to detect the type of mask wearing. The experimental results show that reliable dataset is acquired and the YOLOv5 model effectively recognize type of mask wearing.

신경 회로망을 이용한 자궁 경부 세포진 영상의 영역 분할에 관한 연구 (A Study on Segmentation of Uterine Cervical Pap-Smears Images Using Neural Networks)

  • 김선아;김백섭
    • 대한의용생체공학회:의공학회지
    • /
    • 제22권3호
    • /
    • pp.231-239
    • /
    • 2001
  • This paper proposes a region segmenting method for the Pap-smear image. The proposed method uses a pixel classifier based on neural network, which consists of four stages : preprocessing, feature extraction, region segmentation and postprocessing. In the preprocessing stage, brightness value is normalized by histogram stretching. In the feature extraction stage, total 36 features are extracted from $3{\times}3$ or $5{\times}5$ window. In the region segmentation stage, each pixel which is associated with 36 features, is classified into 3 groups : nucleus, cytoplasm and background. The backpropagation network is used for classification. In the postprocessing stage, the pixel, which have been rejected by the above classifier, are re-classified by the relaxation algorithm. It has been shown experimentally that the proposed method finds the nucleus region accurately and it can find the cytoplasm region too.

  • PDF

CNN 기반 전이학습을 이용한 뼈 전이가 존재하는 뼈 스캔 영상 분류 (Classification of Whole Body Bone Scan Image with Bone Metastasis using CNN-based Transfer Learning)

  • 임지영;도탄콩;김수형;이귀상;이민희;민정준;범희승;김현식;강세령;양형정
    • 한국멀티미디어학회논문지
    • /
    • 제25권8호
    • /
    • pp.1224-1232
    • /
    • 2022
  • Whole body bone scan is the most frequently performed nuclear medicine imaging to evaluate bone metastasis in cancer patients. We evaluated the performance of a VGG16-based transfer learning classifier for bone scan images in which metastatic bone lesion was present. A total of 1,000 bone scans in 1,000 cancer patients (500 patients with bone metastasis, 500 patients without bone metastasis) were evaluated. Bone scans were labeled with abnormal/normal for bone metastasis using medical reports and image review. Subsequently, gradient-weighted class activation maps (Grad-CAMs) were generated for explainable AI. The proposed model showed AUROC 0.96 and F1-Score 0.90, indicating that it outperforms to VGG16, ResNet50, Xception, DenseNet121 and InceptionV3. Grad-CAM visualized that the proposed model focuses on hot uptakes, which are indicating active bone lesions, for classification of whole body bone scan images with bone metastases.

Shape-Based Classification of Clustered Microcalcifications in Digitized Mammograms

  • Kim, J.K.;Park, J.M.;Song, K.S.;Park, H.W.
    • 대한의용생체공학회:의공학회지
    • /
    • 제21권2호
    • /
    • pp.137-144
    • /
    • 2000
  • Clustered microcalcifications in X-ray mammograms are an important sign for the diagnosis of breast cancer. A shape-based method, which is based on the morphological features of clustered microcalcifications, is proposed for classifying clustered microcalcifications into benign or malignant categories. To verify the effectiveness of the proposed shape features, clinical mammograms were used to compare the classification performance of the proposed shape features with those of conventional textural features, such as the spatial gray-leve dependence method and the wavelet-based method. Image features extracted from these methods were used as inputs to a three-layer backpropagation neural network classifier. The classification performance of features extracted by each method was studied by using receiver operating-characteristics analysis. The proposed shape features were shown to be superior to the conventional textural features with respect to classification accuracy.

  • PDF

CT 정도관리를 위한 인공지능 모델 적용에 관한 연구 (Study on the Application of Artificial Intelligence Model for CT Quality Control)

  • 황호성;김동현;김호철
    • 대한의용생체공학회:의공학회지
    • /
    • 제44권3호
    • /
    • pp.182-189
    • /
    • 2023
  • CT is a medical device that acquires medical images based on Attenuation coefficient of human organs related to X-rays. In addition, using this theory, it can acquire sagittal and coronal planes and 3D images of the human body. Then, CT is essential device for universal diagnostic test. But Exposure of CT scan is so high that it is regulated and managed with special medical equipment. As the special medical equipment, CT must implement quality control. In detail of quality control, Spatial resolution of existing phantom imaging tests, Contrast resolution and clinical image evaluation are qualitative tests. These tests are not objective, so the reliability of the CT undermine trust. Therefore, by applying an artificial intelligence classification model, we wanted to confirm the possibility of quantitative evaluation of the qualitative evaluation part of the phantom test. We used intelligence classification models (VGG19, DenseNet201, EfficientNet B2, inception_resnet_v2, ResNet50V2, and Xception). And the fine-tuning process used for learning was additionally performed. As a result, in all classification models, the accuracy of spatial resolution was 0.9562 or higher, the precision was 0.9535, the recall was 1, the loss value was 0.1774, and the learning time was from a maximum of 14 minutes to a minimum of 8 minutes and 10 seconds. Through the experimental results, it was concluded that the artificial intelligence model can be applied to CT implements quality control in spatial resolution and contrast resolution.

긴꼬리 분포의 광간섭 단층촬영 데이터세트에 대한 다중 레이블 이미지 분류 (Multi-Label Image Classification on Long-tailed Optical Coherence Tomography Dataset)

  • ;정경희;;추현승
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.541-543
    • /
    • 2022
  • In recent years, retinal disorders have become a serious health concern. Retinal disorders develop slowly and without obvious signs. To avoid vision deterioration, early detection and treatment are critical. Optical coherence tomography (OCT) is a non-invasive and non-contact medical imaging technique used to acquire informative and high-resolution image of retinal area and underlying layers. Disease signs are difficult to detect because OCT images have many areas which are not related to any disease. In this paper, we present a deep learning-based method to perform multi-label classification on a long-tailed OCT dataset. Our method first extracts the region of interest and then performs the classification task. We achieve 98% accuracy, 92% sensitivity, and 99% specificity on our private OCT dataset. Using the heatmap generated from trained convolutional neural network, our method is more robust and explainable than previous approaches because it focuses on areas that contain disease signs.

기계학습을 이용한 얼굴 인식을 위한 최적 프로그램 적용성 평가에 대한 연구 (A Study on the Evaluation of Optimal Program Applicability for Face Recognition Using Machine Learning)

  • 김민호;조기용;유희원;이정렬;백운배
    • 한국인공지능학회지
    • /
    • 제5권1호
    • /
    • pp.10-17
    • /
    • 2017
  • This study is the first attempt to raise face recognition ability through machine learning algorithm and apply to CRM's information gathering, analysis and application. In other words, through face recognition of VIP customer in distribution field, we can proceed more prompt and subdivided customized services. The interest in machine learning, which is used to implement artificial intelligence, has increased, and it has become an age to automate it by using machine learning beyond the way that a person directly models an object recognition process. Among them, Deep Learning is evaluated as an advanced technology that shows amazing performance in various fields, and is applied to various fields of image recognition. Face recognition, which is widely used in real life, has been developed to recognize criminals' faces and catch criminals. In this study, two image analysis models, TF-SLIM and Inception-V3, which are likely to be used for criminal face recognition, were selected, analyzed, and implemented. As an evaluation criterion, the image recognition model was evaluated based on the accuracy of the face recognition program which is already being commercialized. In this experiment, it was evaluated that the recognition accuracy was good when the accuracy of the image classification was more than 90%. A limit of our study which is a way to raise face recognition is left as a further research subjects.