• Title/Summary/Keyword: media big data

Search Result 531, Processing Time 0.022 seconds

A Study on the Media Recommendation System with Time Period Considering the Consumer Contextual Information Using Public Data (공공 데이터 기반 소비자 상황을 고려한 시간대별 미디어 추천 시스템 연구)

  • Kim, Eunbi;Li, Qinglong;Chang, Pilsik;Kim, Jaekyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.95-117
    • /
    • 2022
  • With the emergence of various media types due to the development of Internet technology, advertisers have difficulty choosing media suitable for corporate advertising strategies. There are challenging to effectively reflect consumer contextual information when advertising media is selected based on traditional marketing strategies. Thus, a recommender system is needed to analyze consumers' past data and provide advertisers with personalized media based on the information consumers needs. Since the traditional recommender system provides recommendation services based on quantitative preference information, there is difficult to reflect various contextual information. This study proposes a methodology that uses deep learning to recommend personalized media to advertisers using consumer contextual information such as consumers' media viewing time, residence area, age, and gender. This study builds a recommender system using media & consumer research data provided by the Korea Broadcasting Advertising Promotion Corporation. Additionally, we evaluate the recommendation performance compared with several benchmark models. As a result of the experiment, we confirmed that the recommendation model reflecting the consumer's contextual information showed higher accuracy than the benchmark model. We expect to contribute to helping advertisers make effective decisions when selecting customized media based on various contextual information of consumers.

Prediction of Onion Purchase Using Structured and Unstructured Big Data (정형 및 비정형 빅데이터를 이용한 양파 소비 예측)

  • Rah, HyungChul;Oh, Eunhwa;Yoo, Do-il;Cho, Wan-Sup;Nasridinov, Aziz;Park, Sungho;Cho, Youngbeen;Yoo, Kwan-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.11
    • /
    • pp.30-37
    • /
    • 2018
  • The social media data and the broadcasting data related to onion as well as agri-food consumer panel data were collected and investigated if the amount of money spent to purchase onion in year 2014 when onion price plunged latest were correlated with the frequencies of onion-related keywords in the social media data and the broadcasting programs because onion price in year 2018 is expected to plunge due to overproduction and there has been needs to analyze impacts of social media and broadcasting program on onion purchase in the previous similar events, and identify potential factors that can promote onion consumption in advance. What we identified from our study include a) broadcasting news programs mentioning words "onion," were correlated with onion purchase with 3 - 6 weeks in advance; b) broadcasting entertainment programs mentioning words "onion and health," were correlated with onion purchase with 11 weeks in advance; c) blog mentioning words "onion and efficacy," were correlated with onion purchase with 5 weeks in advance. Our study provided a case on how social media and broadcasting programs could be analyzed for their effects on consumer purchase behavior using big data collection and analysis in the field of agriculture. We propose to use the findings from the study may be applied to promote onion consumption.

A Sustainable Tourism Study in Underdeveloped Areas Using Big Data Analysis Techniques

  • Hyun-Seok Kim;Sang-Hak Lee;Gi-Hwan Ryu
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.112-118
    • /
    • 2024
  • We Design The problem of underdeveloped areas is emerging as a social problem. Industrialization drove the population to the cities, creating underdeveloped areas. Underdeveloped areas are causing social problems such as population decline and aging. It is necessary to study the continuous tourism development of underdeveloped areas through development and improvement projects. Using social media big data to investigate keywords in underdeveloped areas and see the connection between keywords. The purpose of this study was to conduct core research divided by type and to investigate the keywords of tourism in underdeveloped areas through concor analysis of underdeveloped areas. As a result of the study, keywords were connected for each type of redevelopment, regional development, regional economy, and underdeveloped areas. Through this, the keywords for sustainable tourism in underdeveloped areas were identified. It is hoped that this study will develop sustainable tourism for the keywords of underdeveloped areas.

Positive or negative? Public perceptions of nuclear energy in South Korea: Evidence from Big Data

  • Park, Eunil
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.626-630
    • /
    • 2019
  • After several significant nuclear accidents, public attitudes toward nuclear energy technologies and facilities are considered to be one of the essential factors in the national energy and electricity policy-making process of several nations that employ nuclear energy as their key energy resource. However, it is difficult to explore and capture such an attitude, because the majority of prior studies analyzed public attitudes with a limited number of respondents and fragmentary opinion polls. In order to supplement this point, this study suggests a big data analyzing method with K-LIWC (Korean-Linguistic Inquiry and Word Count), sentiment and query analysis methods, and investigates public attitudes, positive and negative emotional statements about nuclear energy with the collected data sets of well-known social media and network services in Korea over time. Results show that several events and accidents related to nuclear energy have consistent or temporary effects on the attitude and ratios of the statements, depending on the kind of events and accidents. The presented methodology and the use of big data in relation to the energy industry is suggested as it can be helpful in addressing and exploring public attitudes. Based on the results, implications, limitations, and future research areas are presented.

A Study on the Spatial Patterns of Tweet Data for Urban Areas by Time - A Case of Busan City - (도시 지역 트윗 데이터의 시간대별 공간분포 특성 - 부산광역시를 사례로 -)

  • Ku, Cha Yong
    • Journal of Cadastre & Land InformatiX
    • /
    • v.46 no.2
    • /
    • pp.269-281
    • /
    • 2016
  • The process of spatial big data, such as social media, is being paid more attention in the field of spatial information in recent years. This study, as an example of spatial big data analysis, analyzed the spatial and temporal distribution of Tweet data based on the location and time information. In addition, the characteristics of its spatial pattern by times were identified. Tweet data in Busan city are collected, processed, and analyzed to identify the characteristics of the temporal and spatial pattern. Then, the results of Tweet data analysis were compared with the characteristics of the land type. This study found that spatial pattern of tweeting in the city was associated with given time periods such as daytime and nighttime in both weekdays and weekends. The spatial distribution patterns of individual time periods were compared with the characteristics of the land for the spatially concentrated area. The results of this study showed that tweeted data would be related to different spatial distribution depending on the time, which potentially reflects the daily pattern and characteristics of the land type of urban area to some extent. This study presented the possible incorporation of social media data, e. g. Tweet data, into the field of spatial information. It is expected that there will be more advantage to use a variety of social media data in areas such as land planning and urban planning.

Trend Analysis of Convergence Research based on Social Big Data (소셜 빅데이터 기반 융합연구 동향 분석)

  • Noh, Younghee;Kim, Taeyoun;Jeong, Dae-Keun;Lee, Kwang Hee
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.2
    • /
    • pp.135-146
    • /
    • 2019
  • This study was designed to analyze trends in the entire convergence research beyond academic research through social media big data analysis at a time when interdisciplinary convergence research is emphasized along with the fourth industrial revolution. For this purpose, about 150,000 cases of texts and titles were acquired for about 10 years from January 2009 to September 2018 in connection with the convergence research in social media, and word cloud and network analysis were conducted. As a results, the research fields that were actively conducted for each period were eco-tech in 2009 and 2010, smart technology in 2011 and 2012, information and communication in 2013 and 2014, robots in 2015 and 2016, and artificial intelligence in 2017 and 2018. Also, the research areas that have been consistently conducted for about 10 years are culture, design, chemistry, nanotechnology, biotechnology, robot, IT, and information and communication. Since this study identifies trends in convergence research over time, it can be helpful to researchers who are planning convergence research direction by understanding the trends of convergence research.

The Characteristics of Fashion Flex on Social Media (소셜 미디어 속 패션 플렉스(Flex) 현상의 특성)

  • Park, Juha;Chun, Jaehoon
    • Fashion & Textile Research Journal
    • /
    • v.23 no.1
    • /
    • pp.31-43
    • /
    • 2021
  • This study analyzes the characteristics of fashion flex, which have recently spread on social media. The study was conducted with big data analysis that derived flex keywords from news articles and social media as well as case studies that collected 136 posted images on Instagram to analyze the content. The meaning of flex was positively accepted based on big data results. Flex was also a buzzword frequently used on social media as well as a symbolic meaning when discussing luxury goods or fashion brand experiences. The characteristics of fashion flex in social media were largely divided into three categories. First, conspicuous consumption is considered an active expression of individual fashion tastes or self-oriented consumption and emphasizes individuality through consumption. The second characteristic is that the public actively participates in events or fashion flex challenges. People use similar fashion styles or products to participate in playful social interactions with others using various Instagram functions. Finally, acts of pursuing psychological well-being in social media were used as the term flex in a broad sense and were shown to actively explore fashion-related materials and experiences for individual happiness. This study found that the meaning of existing conspicuous consumption is transforming into positive consumption, such as the expression of taste-based identity or the seeking of fun and psychological well-being. It is also meaningful that fashion has become an effective means to express individuality and taste in expressing flex.

A Study on Hotel Customer Reputation Analysis based on Big Data (빅 데이터 기반 호텔고객 평판 분석에 관한 연구)

  • Kong, Hyo-Soon;Song, Eun-Jee
    • Journal of Digital Contents Society
    • /
    • v.15 no.2
    • /
    • pp.219-225
    • /
    • 2014
  • Competition between corporations is getting more intense, so they need customer feedback in order to fulfill an effective management. Recently, SNS (Social Network Service) such as Twitter and Facebook has grown dramatically because of smart phones. Social media like Twitter and Facebook let customers to express their needs, and using big data such as data on SNS is a very effective method for getting customer's feedback. Collecting and analyzing social big data are operated by Buzz monitoring system. This research suggests how to utilize big data for getting customer's feedback on hotel CRM(Customer Relationship Management), which considers customer itself as asset of business. This paper demonstrates the research of buzz monitoring system that analyzes big data, and presents results of hotel customer reputation using buzz monitoring system. It would analyze the result from the hotel customer reputation, and research the implication in this paper.

The Exploratory Study for the Application of the Sports Field in the Fourth Industrial Revolution: Focus on the Social Big Data (4차 산업혁명의 스포츠 현장 적용을 위한 탐색적 연구: 소셜 빅데이터 활용 방안을 중심으로)

  • Park, SungGeon;Hwang, YoungChan
    • 한국체육학회지인문사회과학편
    • /
    • v.56 no.4
    • /
    • pp.397-413
    • /
    • 2017
  • The purpose of this study is to introduce the case and to provide related information for the physical education major to handle and utilize the social big data through the exploratory study for the application of sports industry in the fourth industrial revolution. For this study, data was collected from the article database, which covers the keyword such as 'Social Big Data', 'Sports' and so on. The analyzed articles were 86 articles. As a results, The research on social big data applied to sports industry are as follows: 1) Analysis of major issues related to sports fans' interests and sports events, 2) A study on media sports engagement, 3) The prediction analysis of sports game based on the sentiment analysis, 4) Development of salary estimation model for professional player in sports, 5) Research trend analysis and so on. In conclusion, the social big data analysis technology in the sports industry and management can be utilized variously. Therefore, the specialists of the sports industry and management field need to learn the techniques, to acquire the know-how for the research project, to convert the convergence thinking.

Welfare Policy Visualization Analysis using Big Data -Chungcheong- (빅데이터를 활용한 복지정책 시각화분석 -충청도 중심으로-)

  • Dae-Yu Kim;Won-Shik Na
    • Advanced Industrial SCIence
    • /
    • v.2 no.1
    • /
    • pp.15-20
    • /
    • 2023
  • The purpose of this study is to analyze the changes and importance of welfare policies in Chungcheong Province using big data analysis technology in the era of the Fourth Industrial Revolution, and to propose stable welfare policies for all generations, including the socially underprivileged. Chungcheong-do policy-related big data is coded in Python, and stable government policies are proposed based on the results of visualization analysis. As a result of the study, the keywords of Chungcheong-do government policy were confirmed in the order of region, society, government and support, education, and women, and welfare policy should be strengthened with a focus on improving local health policy and social welfare. For future research direction, it will be necessary to compare overseas cases and make policy proposals on the stable impact of national welfare policies.