• Title/Summary/Keyword: mechanical stress response

Search Result 450, Processing Time 0.024 seconds

Thermal bending analysis of functionally graded thick sandwich plates including stretching effect

  • Mohammed Sid Ahmed Houari;Aicha Bessaim;Smain Bezzina;Abdelouahed Tounsi
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.373-384
    • /
    • 2023
  • The main objective of this research work is to present analytical solutions for the thermoelastic bending analysis of sandwich plates made of functionally graded materials with an arbitrary gradient. The governing equations of equilibrium are solved for a functionally graded sandwich plates under the effect of thermal loads. The transverse shear and normal strain and stress effects on thermoelastic bending of such sandwich plates are considered. Field equations for functionally graded sandwich plates whose deformations are governed by either the shear deformation theories or the classical theory are derived. Displacement functions that identically satisfy boundary conditions are used to reduce the governing equations to a set of coupled ordinary differential equations with variable coefficients. The results of the shear deformation theories are compared together. Numerical results for deflections and stresses of functionally graded metal-ceramic plates are investigated.

Reliability Analysis for Composite Plate with the Various Design Requirement (다양한 설계 요구조건을 고려한 복합재 평판의 신뢰성 해석)

  • Lee, Seok-Je;Jang, Moon-Ho;Kim, In-Gul
    • Composites Research
    • /
    • v.20 no.4
    • /
    • pp.25-30
    • /
    • 2007
  • The advanced fiber-reinforced laminated composites are widely used in a variety of engineering applications such as aerospace, marine, mechanical and civil engineering for weight savings because of their high specific strength and stiffness. The material properties of ply is known to have larger variations than that of conventional materials and very sensitive to the loading direction. Therefore, it is important to consider the variations on designing the laminated composite. This paper demonstrates the importance of considering uncertainties through examining the effect of material properties variations on various design requirements such as tip deflection, natural frequency and buckling stress using COMSOL-MATLAB interface.

Stochastic identification of masonry parameters in 2D finite elements continuum models

  • Giada Bartolini;Anna De Falco;Filippo Landi
    • Coupled systems mechanics
    • /
    • v.12 no.5
    • /
    • pp.429-444
    • /
    • 2023
  • The comprehension and structural modeling of masonry constructions is fundamental to safeguard the integrity of built cultural assets and intervene through adequate actions, especially in earthquake-prone regions. Despite the availability of several modeling strategies and modern computing power, modeling masonry remains a great challenge because of still demanding computational efforts, constraints in performing destructive or semi-destructive in-situ tests, and material uncertainties. This paper investigates the shear behavior of masonry walls by applying a plane-stress FE continuum model with the Modified Masonry-like Material (MMLM). Epistemic uncertainty affecting input parameters of the MMLM is considered in a probabilistic framework. After appointing a suitable probability density function to input quantities according to prior engineering knowledge, uncertainties are propagated to outputs relying on gPCE-based surrogate models to considerably speed up the forward problem-solving. The sensitivity of the response to input parameters is evaluated through the computation of Sobol' indices pointing out the parameters more worthy to be further investigated, when dealing with the seismic assessment of masonry buildings. Finally, masonry mechanical properties are calibrated in a probabilistic setting with the Bayesian approach to the inverse problem based on the available measurements obtained from the experimental load-displacement curves provided by shear compression in-situ tests.

Shape Optimization of S-tube for Heat Exchanger Used in High Temperature Environment Using FE Analysis and DOE (유한요소법과 실험계획법을 이용한 고온 열교환기용 S-관의 형상 최적화)

  • Jeong, Ho-Seung;Cho, Jong-Rae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.497-503
    • /
    • 2012
  • The aim of this study was to optimize S-tube shape of heat exchanger in term of reducing the size of tube bundle and improving the mechanical properties such as the thermal stress and resonance. The geometric parameters such as offset length, the straight distance between one end and other end of tube, the tube length in straight portion and fillet radius was assessed as a valid parameters. The structural analysis was performed to estimate the structural characteristics. Main effect analysis was performed to investigate the main effect for the various geometric parameters. The response surface methodology was employed to establish mathematical approximation models as a function of the geometric parameters of the S-tube. Also, The optimization was performed to optimize geometric parameters of S-tube using the regression equations and optimization tool. The optimized tube shape has been proposed. Those could be used in the heat exchanger design used in high temperature.

An Optimization Design of the Insertion Part for Preventing the Screw Thread from Loosening (나사 풀림 방지를 위한 삽입 부품의 설계 최적화)

  • Park, Sangkun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2356-2363
    • /
    • 2015
  • This study deals the optimization design with the simulation based design of a coil spring inserted into the lock nut for preventing the screw thread from loosening at the bolted joint when the high-strength steel bolt with the property class of 10.9 is used and the screw torque of 640 to 800 (Nm) is applied. In this study, structural analysis of assembly composed of bolt, nut and coil spring is carried out to evaluate its safety factors on the basis of the equivalent stress with commercial finite element analysis software. And the design strategy to extract the design improvement from these simulation results is established. An iterative process performed with the proposed design strategy is also proposed for improving the performance of the existing design. At the proposed procedure, the feasible design parameters using response surface method are found, and then these parameters are verified to be optimal or not by comparing with the response values and the simulation results obtained from the feasible parameters.

Research on the Thermal Comfort Heating Mode Considering Psychological and Physiological Response of Automobile Drivers (운전자의 심리·생리 반응을 고려한 승용차 쾌적 난방 모드에 관한 연구)

  • Kim, Min Soo;Kum, Jong Soo;Park, Jong Il;Kim, Dong Gyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.3
    • /
    • pp.149-157
    • /
    • 2018
  • In this research, the psychological and physiological reactions of the driver were measured during winter to evaluate thermal comfort. The experiment was conducted using 3 different cases which are hot air heating, warm-wire seat heating and hot air & warm-wire seat heater operating simultaneously. With regard to psychological reaction, the warm-wire heating mode was the most preferred. The reason is that it is dry in other cases. With regard to EEG response, thermal comfort increased by 37% in warm air mode heating. In addition, when the warm-wire heating mode and the hot air & warm-wire heating mode were simultaneously operated, the thermal comfort continuously increased by between 17% and 20% for 20 minutes after boarding. Under the change of the autonomic nervous system, the thermal stress level increased by 23% after 15 minutes on board in the hot air heating mode and decreased continuously by 13% during the warm-wire seat heating mode. We recommended the hot air heating mode is only used for a short time to raise the inside temperature during the early boarding period and that warm-wire seat heating mode be actively utilized.

Effects of Wounding and Jasmonic Acid on Polyphenol Oxidase in Tomato Seedlings (토마토 유식물의 Polyphenol Oxidase에 미치는 상해 및 Jasmonic Acid의 영향)

  • Jin Sun-Young;Hong Jung-Hee
    • Journal of Environmental Science International
    • /
    • v.8 no.6
    • /
    • pp.669-676
    • /
    • 1999
  • The effects of wounding and jasmonic acid(JA) on polyphenol oxidase(PPO) in tomato(Lycopersicon esculentum Mill.) seedlings were investigated. PPO was strongly induced by wounding or JA, and the response was also shown to be systemically induced by wounding. Mechanical wounding in cotyledon or leaf produced a signal that caused the concentration of PPO to increase in the unwounded cotyledon, in the first leaves but not in the second leaves. Severity of wounding and light intensity also affected wound induced change in PPO activity, JA showed a stimulatory effect on the loss of chlorophyll and the rapid increase in PPO activity. The PPO was clearly more active in the wounded leaves than in controls. The potency and specificity of the JA indicate a close relationship between JA and wound-induced changes in PPO in tomato species. JA and abscisic acid(ABA) acted similarly on both unwounded and wounded leaves, but the amount of PPO in the wounded leaves was always more than the respective controls. The highest increase in PPO activity occurred in woundand JA-induced leaves of seedlings kept under bright lighting. Benzyladenine(BA) completely abolished JA- and ABA-induced PPO activity. The results suggest that JA-induced PPO activity is due to de novo PPO synthesis. Histochemical tests for PPO in stems of wound- and JA -treated tomato plants indicate that PPO was localized primarily, in the. outer .cortex . and xylem parenchyma. It is concluded that exogenously applied JA acts as stress agents and PPO may be a component of the inducible anti-hervivore defense response.

  • PDF

Comparison of Vibrational Displacements Generated by Different Types of Surface Source in a Soft Tissue (여러 종류의 표면 진동원에 대한 연조직에서의 진동 변위 비교)

  • Park, Jeong Man;Kwon, Sung-Jae;Jeong, Mok-Kun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.5
    • /
    • pp.469-483
    • /
    • 2012
  • The propagation characteristics of a mechanical wave in human soft tissue depend on its elastic properties. Investigation of these propagation characteristics is of paramount importance because it may enable us to diagnose cancer or tumor from the vibration response of the tissue. This paper investigates and compares displacement patterns generated in soft tissue due to several forms of low-frequency vibration sources placed on a surface. Among vibration sources considered are a normal load, tangential load, and antiplane shear load. We derive analytical expressions for displacements in viscoelastic single layers, and calculate displacement patterns in half space and infinite plate type tissue. Also, we simulate the vibration response of a finite-sized tissue using finite element method. The effects of the type of stress, the size and frequency of vibration sources, and medium boundaries on displacement patterns are discussed.

A Behavior Analysis of HSR Concrete Slab Track under Variety of Rail Pad Static Stiffness on Fatigue Effect (피로효과를 고려한 레일패드의 정적스프링계수 변화에 따른 콘크리트 슬래브 제도의 거동분석)

  • Park, Yong-Gul;Kang, Kee-Dong;Choi, Jung-Youl
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.499-505
    • /
    • 2007
  • The major effective of this study is to investigate the fatigue effects of rail pad on High Speed Railway with concrete slab track system. It analyzed the mechanical behaviors of HSR concrete slab track with applying rail pad stiffness based on fatigue effect (hardening and increasing stiffness) on the 3-dimensional FE analysis and laboratory test for static & dynamic characteristics. As a result, the hardening of rail pad due to fatigue loading condition are negative effect for the static & dynamic response of concrete stab track which is before act on fatigue effect. The analytical and experimental study are carried out to investigate rail pad on fatigue effected increase vertical acceleration and stress and decrease suitable deflection on slab track. And rail pad based on fatigue effect induced dynamic maximum stresses, the increase of damage of slab track is predicted by adopting fatigue effected rail pad. after due consideration. The servicing HSR concrete slab track with resilient track system has need of the reasonable determination after due consideration fatigue effect of rail pad stiffness which could be reducing the effect of static and dynamic behavior that degradation phenomenon of structure by an unusual response characteristic and a drop durability.

Modeling and optimization of infill material properties of post-installed steel anchor bolt embedded in concrete subjected to impact loading

  • Saleem, Muhammad
    • Smart Structures and Systems
    • /
    • v.29 no.3
    • /
    • pp.445-455
    • /
    • 2022
  • Steel anchor bolts are installed in concrete using a variety of methods. One of the most common methods of anchor bolt installation is using epoxy resin as an infill material injected into the drilled hole to act as a bonding material between the steel bolt and the surrounding concrete. Typical design standards assume uniform stress distribution along the length of the anchor bolt accompanied with single crack leading to pull-out failure. Experimental evidence has shown that the steel anchor bolts fail owing to the multiple failure patterns, hence these design assumptions are not realistic. In this regard, the presented research work details the analytical model that takes into consideration multiple micro cracks in the infill material induced via impact loading. The impact loading from the Schmidt hammer is used to evaluate the bond condition bond condition of anchor bolt and the epoxy material. The added advantage of the presented analytical model is that it is able to take into account the various type of end conditions of the anchor bolts such as bent or U-shaped anchors. Through sensitivity analysis the optimum stiffness and shear strength properties of the epoxy infill material is achieved, which have shown to achieve lower displacement coupled with reduced damage to the surrounding concrete. The accuracy of the presented model is confirmed by comparing the simulated deformational responses with the experimental evidence. From the comparison it was found that the model was successful in simulating the experimental results. The proposed model can be adopted by professionals interested in predicting and controlling the deformational response of anchor bolts.