• Title/Summary/Keyword: mechanical splice

Search Result 48, Processing Time 0.023 seconds

Mechanical splice Using Self lighting (Self lighting 조사를 이용한 광기계식 접속자)

  • Choe, Yeong-Bok;Park, Su-Jin
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2008.07a
    • /
    • pp.179-180
    • /
    • 2008
  • Optical Mechanical splice is essential component to construct for FTTH. Optical Mechanical splice is executed many countries' FTTH including Korea. In this paper, we have designed Optical Mechanical splice using UV and completed a series of mechanical and environmental tests on the optical Mechanical splice. And the results of tests and Bellcore-requirements for optical Mechanical splice will be presented. Accordingly, evaluation method of optical Mechanical splice has gained power to improve the quality and stability of it.

  • PDF

Cost Analysis on Mechanical Splice of High-Strength Reinforcement (550MPa) used in Nuclear Power Plant Structures (원전구조물의 고강도철근(550MPa) 사용에 따른 기계적이음 경제성 분석)

  • Lee, Byung Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.155-156
    • /
    • 2019
  • Because of the congestion problems, the high-strength reinforcements are expected to be used in nuclear power plant structures in the near future. According to ACI 349-13, lap splices of high-strength(550MPa) bars can be used but it is expected that lap splice length of reinforcement will be increased significantly. The increased lap splice length will be lead to increase in construction cost & period and to problems of other bar congestions. Therefore, this study will analyze the economic feasibility on mechanical splice of high-strength reinforcement used nuclear power plant structures instead of lap splice.

  • PDF

Splice Site Detection Using a Combination of Markov Model and Neural Network

  • M Abdul Baten, A.K.;Halgamuge, Saman K.;Wickramarachchi, Nalin;Rajapakse, Jagath C.
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.167-172
    • /
    • 2005
  • This paper introduces a method which improves the performance of the identification of splice sites in the genomic DNA sequence of eukaryotes. This method combines a low order Markov model in series with a neural network for the predictions of splice sites. The lower order Markov model incorporates the biological knowledge surrounding the splice sites as probabilistic parameters. The Neural network takes the Markov encoded parameters as the inputs and produces the prediction. Two types of neural networks are used for the comparison. This method reduces the computational complexity and shows encouraging accuracy in the predictions of splice sites when applied to several standard splice site dataset.

  • PDF

Characteristics of Injection Molding in Optical Fiber Splice Closure (광섬유 케이블 접속함체의 사출성형 특성 분석)

  • Choi, Jaeyoung;Hong, Minsung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.6
    • /
    • pp.434-439
    • /
    • 2016
  • Optical fiber splice closure serves to protect connection parts from external environment. Moreover, it functions as a connection, junction, and distribution in diverse surroundings such as aerial, underground, duct, and pole. In this research, first, the optical fiber splice closure, its configuration, and the design problem were briefly investigated. Second, the design and application for in-line cable closure were studied to satisfy its construction and technical features. The injection molding conditions and optimal design were conducted to save time and cost during the manufacturing process. Third, methods to minimize loss via of optical fiber cable while strongly fixing optical fiber cable with optical cable holder to prevent fracture were researched, and tests such as perfect air tightness and mechanical and environmental performance were conducted.

Effect of Fiber Friction, Yarn Twist, and Splicing Air Pressure on Yarn Splicing Performance

  • Das A.;Ishtiaque S. M.;Parida Jyoti R.
    • Fibers and Polymers
    • /
    • v.6 no.1
    • /
    • pp.72-78
    • /
    • 2005
  • The impact of fiber friction, yarn twist, and splicing air pressure on mechanical and structural properties of spliced portion have been reported in the present paper. The mechanical properties include the tensile and bending related properties and, in the structural properties, the diameter and packing density of the splices are studied. A three variable three level facto­rial design approach proposed by Box and Behnken has been used to design the experiment. The results indicate that there is a strong correlation between retained spliced strength (RSS) and retained splice elongation (RSE) with all the experimental variables. It has been observed that RSS increases with the increase in splice air pressure and after certain level it drops, whereas it consistently increases with the increase in yarn twist. The RSE increases with the increase in both fiber friction and yarn twist. It has also been observed that the yarn twist and splicing air pressure have significant influence on splice diameter, percent increase in diameter and retained packing coefficient, but the fiber friction has negligible influence on these parame­ters. Yarn twist and splicing air pressure has a strong correlation with splice flexural rigidity, where as poor correlation with retained flexural rigidity.

Quasi-Static and Shaking Table Tests of Precast Concrete Structures Utilizing Clamped Mechanical Splice (가압고정 기계적이음을 활용한 프리캐스트 콘크리트 구조물의 준정적 및 진동대 실험)

  • Sung, Han Suk;Ahn, Seong Ryong;Park, Si Young;Kang, Thomas H.-K.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.37-47
    • /
    • 2023
  • A new clamped mechanical splice system was proposed to develop structural performance and constructability for precast concrete connections. The proposed mechanical splice resists external loading immediately after the engagement. The mechanical splices applicable for both large-scale rebars for plants and small-scale rebars for buildings were developed with the same design concept. Quasi-static lateral cyclic loading tests were conducted with reinforced and precast concrete members to verify the seismic performance. Also, shaking table tests with three types of seismic wave excitation, 1) random wave with white noise, 2) the 2016 Gyeongju earthquake, and 3) the 1999 Chi-Chi earthquake, were conducted to confirm the dynamic performance. All tests were performed with real-scale concrete specimens. Sensors measured the lateral load, acceleration, displacement, crack pattern, and secant system stiffness, and energy dissipation was determined by lateral load-displacement relation. As a result, the precast specimen provided the emulative performance with RC. In the shaking table tests, PC frames' maximum acceleration and displacement response were amplified 1.57 - 2.85 and 2.20 - 2.92 times compared to the ground motions. The precast specimens utilizing clamped mechanical splice showed ductile behavior with energy dissipation capacity against strong motion earthquakes.

A Study on the Mechanical Properties of Gas Pressure Welded Splices of Deformed Reinforcing Bar (가스압접 이형철근의 기계적 강도 특성 연구)

  • Jeon, Juntai
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.4
    • /
    • pp.520-526
    • /
    • 2015
  • Reinforcing bar splices are inevitable in reinforced concrete structure. In these days, there are three main types of splices used in reinforced concrete construction site - lapped splice, mechanical splice and welded splice. Low cost, practicality in construction site, less time consuming and high performance make gas pressure welding become a favorable splice method. However, reinforcing bar splice experiences thermal loading history during the welding procedure. This may lead to the presence of residual stress in the vicinity of the splice which affects the fatigue life of the reinforcing bar. Therefore, residual stress analysis and tensile test of the gas pressure welded splice are carried out in order to verify the load bearing capacity of the gas pressure welded splice. The reinforcing bar used in this work is SD400, which is manufactured in accordance with KS D 3504. The results show that the residual stresses in welded splice is relatively small, thus not affecting the performance of the reinforcing bar. Moreover, the strength of the gas pressure welded splice is high enough for the development of yielding in the bar. As such, the reinforcing bar with gas pressure welded splice has enough capacity to behave as continuous bar.

Development of Filler Type Mechanical Splice for High Strength Re-bar (고강도 철근용 충전형 기계적 이음장치 개발 연구)

  • Lee, Seongsoo;Chun, Homin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.686-693
    • /
    • 2018
  • Various types of re-bar splicing methods have been developed and applied to reinforced concrete (RC) structures in the field. According to previous studies, the coupler splice is relatively superior to the lap splice in terms of cost efficiency when the diameter or strength of the re-bar is larger or higher. This study was performed to develop a filler type mechanical splice for a high-strength re-bar (SD600) in reinforced concrete structures. The deformed re-bars were inserted into a circular steel tube coupler and high-strength epoxy filler was then injected into the coupler. The splice system was completed by hardened filler in a coupler. The epoxy filler was used as the manufactured production epoxy to conduct experiments of filler type mechanical splice specimens, and to observe the failure loads and failure aspects of the specimens. For this goal, the experiment of one-way tensile test was conducted for the epoxy filler type mechanical splices specimens according to the compressive strength of epoxy, length of coupler, and diameter of re-bar. The shape of failure of the re-bar coupler splice showed that the re-bars were pulled between the lugs of the re-bars as a result of the shear fracture of the hardened epoxy. The actual failure load of the experiment specimen was approximately 2 times higher than the expected failure load of the epoxy filler, which greatly improves the failure load of the hardening epoxy filler due to the restraint of the steel coupler.

A Study on the Development of Chonggu Splice-Sleeve System (청구 스플라이스 슬리브 시스템 개발에 관한 연구)

  • 곽철승;이용재;이동우;김병균;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.508-513
    • /
    • 1996
  • The purpose of this paper, having chosen the connection method, filled by High-strength mortar, in conncetion of PC member, is to study the mechanical behaviour and practical usage of the method. The paper estimates the connection ability of Reinforced-bar, that is, Sleeve considering the effect of Reinforced-bar's dimeter. Sleeve's length and diameter in the structural behaviour of mortar-filled connection, therefore the behaviour of Splice-Sleeve exists in concrete practically. This paper discusses the effect of the concrete in Splice-Sleeve. Also, to estimate structural behaviour in a practical wall panel, the upper and bottom wall panels are produced and the behaviour of Splice-Sleeve is discussed. And then Vertical Tie Bar being designed by using Precast method, this paper presents the various application and the practicable method using Splice-Sleeve.

  • PDF

광접속 부품 기술 동향

  • An, Seung-Ho;Jeong, Myeong-Yeong;Jeon, O-Gon;Choe, Tae-Gu
    • Electronics and Telecommunications Trends
    • /
    • v.7 no.3
    • /
    • pp.121-128
    • /
    • 1992
  • 광통신 시스팀에서 광선로의 접속에 사용되는 부품으로 광커넥터와 Mechanical Splice 등이 있다. 시스팀 구성에 필수적인 부품으로서 이들 기술의 동향을 파악하여 접속부품의 개발에 응용하고자 광커넥터의 최근 연구분야인 광섬유 후퇴현상과 반사손실특성 향상을 위한 연구내용과 Mechanical Splice 의 기술동향을 기술하였다.