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ABSTRACT: This paper introduces a method which
improves the performance of the identification of splice
sites in the genomic DNA sequence of eukaryotes. This
method combines a low order Markov model in series
with a neural network for the predictions of splice sites.
The lower order Markov model incorporates the
biological knowledge surrounding the splice sites as
probabilistic parameters. The Neural network takes the
Markov encoded parameters as the inputs and produces
the prediction. Two types of neural networks are used for
the comparison. This method reduces the computational
complexity and shows encouraging accuracy in the
predictions of splice sites when applied to several standard
splice site dataset.

1 INTRODUCTION

The DNA sequences of most genes create messenger
RNA (mRNA), which encodes for protein. In prokaryotes
the mRNA is a mere copy of a fragment of the DNA,
whereas, in eukaryotes the RNA copy of DNA (the
primary transcript or pre-mRNA) contains coding (Exon
which code for proteins) and non-coding segments (Intron
that do not code for proteins), which should be precisely
spliced out to produce the mRNA. The border between
introns and exons are termed as splice sites. The splice
site in the upstream part of the intron is called the donor
splice site and the downstream part is termed as acceptor
splice site. The donor splice site usually contains the
dinucleotide GT and the acceptor splice site contains
dinucleotide AG. The more accurately a splice site can be
located, the easier and more reliable it becomes to locate
genes-hence protein coding regions in a DNA sequence.
So identifying splice site accurately is still a worthwhile
problem to be solved.

A number of computational methods have been
developed to identify these splice sites, including both
“stand alone splice site finders and gene finders. The gene
finding methods identify splice sites as an essential part of
the gene identifying task. Sequencing of many genomes
has already been completed, and sound computational
model is necessary to find splice sites and hence genes as
the amount of training data are also increasing.
Computational techniques and algorithms that identify
splice site include: neural network approaches [1, 2, 4,
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11], probabilistic approaches [3, 9, 12], methods based on
discriminant analysis [15]. These methods work based on
seeking consensus patterns or features and try to identify
the underlying relationships among nucleotides in the
splice site and the surrounding region by using sets of
training data containing true and false splice sites. Neural
networks learn the complex features of neighbourhoods
surrounding the consensus di-nucleotides [AG/GT] by
learning a  complex non-linear transformation.
Probabilistic models estimate position specific
probabilities of splice sites by computing likelihoods of
candidates of signal sequences. The discriminant analysis
uses several statistical measures to evaluate the presence
of specific nucleotides, allowing recognizing the splice
sites without explicitly determining the probability
distributions.

Higher-order markov models are always considered
as potential models for representing regions of nucleotides
in the splice sites; however, their implementation has been
practically prohibitive due to the need for large number of
training data samples and compute-intensive nature of the
training algorithms [3,8]. Neighbouring nucleotides are
strongly correlated in the Splice Site (SS) consensus
pattern. Neural network approaches take inputs from a
neighbourhood window of nucleotides and are capable of
learning complex interactions of nucleotides by finding
arbitrary complex non-linear mapping.

The method of Loi Sy Ho and J. C. Rajapakse [8],
showed for the first time that it is possible to implement a
higher order markov model by combining lower order
markov models with backpropagation neural network. In
this method one first-order and two second-order Markov
chains are used in the first stage. The first order Markov
chian represents the consensus sequence, and the second
order Markov chains are used to model the codon biases
around the splice sites. The probabilistic parameters
produced by all three Markov models are fed to a
feedforward neural network in the second stage. The use
of the neural network on top of Markov chain model
enables this local interaction of nucleotides to represent
higher-order dependencies. In this paper we show that it is
possible to achieve almost the same level of accuracy by
using a single, first-order Markov model in the first stage
(instead of using three different Markov models as



suggested in [8]), which leads to less complexity and
computational time.

Several experiments have been performed with this
hybrid method, which showed better accuracy and
efficiency than that of some other well known splice site
detection methods. The proposed method accurately
identifies approximately 95% of acceptor and donor sites
and falsely predicts approximately 5% of the sites, which
outperforms almost all the best-known methods. Sections
2 introduce biologically related computational models of
acceptor sites and donor sites. Section 3 explains how a
combination of a neural network and low-order markov
chains is capable achieving higher-order Markov models
of splice sites.

2 SPLICE SITE MODELS

This method is designed in two stages; lower-order
Markov chain at the first stage and a three a layer neural
network at the second stage The Markov chains aim to
model the conserved pattern present of the splice sites and
to exhibit the difference in characteristics of coding and
non-coding regions before and after the sites. The
probabilistic parameter results from the Markov models
are then fed to a feed forward neural network, at the
second stage, whose outputs are used to make the
prediction.

2.1 Markov Chain Models

Segments of genomic sequences are often modelled by
Markov chains whose observed state variables are

elements drawn from the alphabet €, , the set of four
nucleotides: A, T, G, and C [8]. The Markov chain is
defined by a number of states equal to the number of

nucleotides in the sequence; each state variable of the
model corresponds to a nucleotide in the sequence. Let us

define an arbitrary sequence of length [
{sl,sz,s3, ......... ,s,} such that S, € {A,C,G,T},
Vie {1, ......... , } , then the nucleotide s, is a

realization of the I th state variable of the Markov chain
and except from state i to state i + 1, there is no other
transitions from state I to other states. The model consists

of states ordered in series. It evolves from state S, to

5,,, and emits symbols from the alphabet €2, ; in

which each state is characterized by a position-specific
probability parameter.

Suppose the Markov chain, say M , has an order k, the

likelihood of a sequence, implied by the model M , is
given by

!
siM)=T]PG). (1)
i=1

where §; is a nucleotide at position i of the sequence and
the Markovian probability -
P (s;)=P(s, lSi-l 3 S;_gseeessS;_; ) denotes the
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conditional appearance of the nucleotide at location I

depending on the k predecessors.

A first order Markov model is used to represent the
sequences containing the splice sites. Then the Markovian
parameters are expressed in-terms of position-specific
conditional probabilities -

Pi (Si)=P(Si Si—l’M ), 2

where the model is characterized by the set of parameters:

M ={P(s)s € Qpys»i =1,2,mmecee 1} and s

any element of the alphabet Q.

It would be better to represent the model of the splice
site by using higher-order Markov chains to capture all
possible interactions among nucleotides, surrounding the
splice sites. However, to attain a higher-order Markov
model, the set of training sequences must be very large.
For an n-order Markov model, the training set must cover
all possible subsequences of nucleotides of length n+/ at
every sequence position in the splice site model. That is,
constructions of a Kk th order Markov chain requires
estimation of at least 4**' Markovian parameters. This
implies that the required number of training samples
increases exponentially with the order of the model.

2.2 Neural Networks

Neural network is the computational technique inspired by
biological neurons with the ability to adapt or learn, to
generalize and to cluster or organize data. Typically, a
neural network comprises of many layers of neurons
(units or nodes), each of which performs two functions,
namely aggregation of its inputs from other neurons or the
external environments and generation of an output from
aggregated inputs.

In this work a multilayer neural network with fully
connected weights is used. We will also use a radial basis
function network (RBFN) for comparison purpose. The
neural network is trained by a backpropagation algorithm
and captures the higher-order dependencies around the
splice site. The feedforward multilayer neural network
receives its inputs as Markovian probabilities generated
by the first order Markov chain A . Suppose, the neural
network has 72 input nodes and if the input to the

Jth input node is x

X ZR(Si)’

where P(5,) = P(5,|5,_1, 8,5 pereeeSi )

€)

The neural network has one hidden layer of 72 units
and one output unit. The network output y predicts

whether the input sequence contains an actual splice site
or not, where Y is given by [8]-

y=r Zwkfk(zwijj) , (6)
k=1 j=1



where f,,k =1,2,..,m , and [ denote the
activation functions of the hidden neurons and the output

neuron,  respectively, Ww,,k=12,...,m and

Wik =12,.,m,j=12,..,n denote the

weights connected to the output neuron and to the hidden
layer neurons, respectively. The output activation function
is a unipolar sigmoidal and the hidden layer activation
functions take the form of hyperbolic tangent sigmoidals.

HNeural
Netwrork

Input to

Where 13, s are the empirical probability, coefficients a;

are non-negative real numbers satisfying Z'_ ,a, =1,
=

and the fraction ( %) accounts for unseen occurrences

and guarantees for no zero probability.

NN &) | B S

£ (5)
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DNA

AGTCGTCGTACGTGGITTC

AGTCGTCGTACGTGGTITTC

Sequence

(a) Loi-Rajapakse method

(b) Proposed method

Figurel: Block diagram of the proposed method and Loi-Rajapakse method (a), which consists of two-second order

(MY and M), and one first order (M?® ) Markov chain to model the splice site. In contrast the proposed method
(b), consist of only one first order Markov chain (A ).

23

Sites
The low-order Markov chain provides a probabilistic
description of signals. The neural networks receive
Markov probabilities and combines non-linearly in order
to incorporate more complex and distance interactions
among elements in the splice sites. This sections it is
shown that, by connecting the outputs of low-order
Markov models to the neural network it is possible to
achieve a higher-order Markov model.
Schukat-Talamazzini et. at. [18], has introduced the
interpolated Markov chain for stochastic language
modeling.

Higher-order Markov Model of Splice

By the linear interpolation, we have

™
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The higher-order conditional dependencies can be
approximated by interpolation given a sequence

(S35 peremeerererenen 5;):

2

i-1

09,8, (TP sl )

> (s

j=0 a;8;
where g is a sigmoid function.

P(s,[s{") =
(3)

By using the chain rule of probabilities, the likelihood of

the sequence SII is given by
®
By induction of Eq. (8), that is by replacing conditional

probabilities with the probabilities conditioned by a less
number of elements [8],

by B(s,|siZ}), (10)

-,
[

where {b, :i=

coefficients. That is, the non-linear relationship amongst

2,...1,j=1,.....1} is a set of linear



variables in the sequence can be represented by a
polynomial of sufficient order.

As supported by [10], a neural network with a single
hidden layer, having a sufficient number of hidden
neurons, is capable of approximating the continuous
multi-variate functions defined on a hypercube

[O N ]" , thereby, the input-output relationship represented
by any higher-order polynomial. So by application of Eq.
(10), the neural network receiving inputs from low-order
Markov chains. Whose output is represented in the form

(8]

m m
y= Zcm, ......... m B (5)™ e B (s))™
My ey =0;my +....my =l
(1)
where {m,;i=1.2,..... I} are non-negative integers,

{Cm, .. msm; =12, I} are a set of

real value coefficients, and {P(s,):i-1.2,.....J} are

Markovian probabilities computed from low-order model
M . Observing Eq. (10) and Eq. (11) it can be deduced
that the neural network output, }, represents a higher-

order Markov model, as also pointed in [8]. The higher-
order Markov model takes care of all the conditional
interactions among all the elements in the input sequence.

3 Experiments

3.1 Dataset

Several experiments have been performed to evaluate the
performance of the method with dataset GS1115, provided
by Pertea et. al.[9], dataset NN269, prepared by Reese et.
al.[11], HS3D splice site dataset, provided by Rampone et.
al.[17] and, splice-site detection dataset from the statlog’s
collection, provided by Michie et. al.[6].

In the dataset NN269, together with 1324 confirmed
true acceptor sites and 1324 confirmed true sites extracted
from 269 human genes, 5552 false acceptor and 4922
false donor sites with the consensus dinucleotides
appearing in a neighbourhood of plus and minus 40
nucleotides around a true nucleotide were also collected.

The dataset GS1115 was constructed by using the
Exon-Intron database to collect a confirm gene set. After
disregarding genes with unknown introns, the dataset
consists of 1115 human genes; from which 5733 true
acceptor and 5733 true donor sites with confirmed AG or
GT dinucleotides present were extracted. Additionally,
650099 false acceptor and 488983 false donor sites with
confirmed GT or AG dinucleotides present, which are not
annotated as true sites, were collected.

The Homo sapiens splice site dataset (HS3D) is a
dataset of Homo Sapiens Exon, Intron and splice regions.
From the complete GenBank primate sequences release
123 (8436 entries), then 2955 true acceptor and 2992
donor sites have been extracted as windows of 140
nucleotides around each splice site. Also 287,296 false
acceptor sites and 348,370 windows of false donor sites
have been selected, by searching canonical AG-GT pairs
in non-splicing positions.
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The Statlog’s DNA dataset is a collection of primate
splice junctions gene sequences containing 1770 acceptor
and donor sequences and 1416 sequences which are
neither acceptor nor donor. There are 2000 training
sequences and 1186 test sequences.

3.2 Implementation

The training of the model has been done in two phases: in
phase one, the Markov chain’s model parameters were
estimated and, in phase two, the neural network was
trained. First of all, the training sequences were aligned
with respect to the consensus dinucleotides; sequences
without consensus dinucleotides were discarded to, obtain
the maximum likelihood (ML) estimate of the Markov
model parameters. The estimates of the k —order Markov

A

P

model, in this case, [}

, are given by the ratios of the

frequencies counted from all partial sequences of k+1
elements at i and k elements at ;_1 positions [8]:

#(Si)
#(s4)
where kK =1 for the first order Markov chain and #(.)

presents the observed frequency of its arguments in
training dataset. To avoid some frequencies being zeroes
due to the non-existence of the corresponding
subsequences in the training data set, a constant extra
value was added to every counted frequencies. Desired
outputs were set to either 0.9 or 0.1 to represent the true or
false site at the output.

ﬁi(si)z (12)

33 Results and Discussion

Several experiments have been performed on the basis of
two measures: the sensitivity (S y ) and the specificity

(Sp ) of the model ie. the percentage of false sites

wrongly predicted as true (%FP) and the percentage of
true sites wrongly predicted as false (%FN).

s TP
sensiivity = ————
TP+ FN
specificity = ——————
pecificity = o Fp

The sensitivity is the correct prediction of true sites
and the specificity is the correct prediction of the false
sites. Table 1. shows the performance of Loi-Rajapakse
method and the proposed method for dataset (GS1115),
where the present method showed superior performance
for both acceptor and donor splice sites. Here accuracy is
defined as :

Sy +8,

Accuracy = 2



Dataset | Splice Loi- Proposed
site Rajapakse | Method
method
Accuracy Accuracy
GS1115 | Acceptor | 0.945 0.954
Donor 0.940 0.958

Table 1: Comparison of performance between Loi-
Rajapakse method and proposed method on dataset
GS1115.

Table 1 indicates that the proposed method can accurately
identify approximately 95% of the splice sites when
applied on non-redundant 1115 human gene dataset
(GS115).

Dataset Splice Proposed Markov+
site method RBFN
Accuracy Accuracy
NN269 Acceptor | 0.970 0.900
Donor 0.960 0.500
HS3Dataset Acceptor | 0.945 0.820
Donor 0.960 0.870
Statlog’s DNA | Acceptor | 0.855 0.815
Dataset Donor 0.860 0.840

Table 2: Comparison of performances between the
proposed method with the combination of Markov model
and radial basis function networks on three standard splice
site dataset.

To evaluate the performance of the current method, it
is further applied to three other standard splice site
datasets NN269, HS3Dataset and Statlog’s DNA dataset.
Firstly the performance of the method is compared with
the combination of Markov model and radial basis
functions networks and secondly with backpropagation
neural networks and radial basis function networks. In
most cases current showed better accuracy than other
methods as shown in table 1 and table 2.

Dataset Splice site | Proposed | BPNN RBFN
method
Accuracy | Accuracy | Accuracy
NN269 Acceptor | 0.970 0.775 0.775
Donor 0.960 0.895 0.640
HS3Dataset | Acceptor | 0.945 0.825 0.770
Donor 0.960 0.830 0.825
Statlog’s Acceptor | 0.855 0.850 0.790
DNA Donor 0.860 0.875 0.795
Dataset

Table 3: Comparison of performances between the
proposed method with the standalone backpropagation
neural network and radial basis function networks.

The overall performance of the method is
‘encouraging except the Statlog’s DNA dataset, where the
performance is not very satisfactory due to the limitations
of training samples. Moreover proposed method reduces
the computational time and complexity of the original
method. The Loi-Rajapakse method divided the splice
site into three signal segments namely upstream segment,
signal segment and downstream segment. The upstream
and downstream segments are modelled by two second
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order Markov chains and the signal segment by a first
order Markov chain. The proposed method models the
whole sequence with a single first order Markov chain.
The computational complexity increases exponentially
with the order of the Markov chain. Hence the proposed
model reduces the computational complexity and also the
prediction accuracy is increased.

4 CONCLUSION

Accurate identification of splice sites will enhance the
performance of gene finding methods. This paper
proposes an improved computational method, which will
enhance the performance of splice site detection in
eukaryotic genes with a higher-order Markov model.
Although higher-order Markov models are considered as
accurate models to characterize splice sites, their direct
implementations were not feasible because of the
limitations of estimating the large number of parameters,
using limited amount of training data. The use of lower-
order Markov models followed by a neural network
provides an efficient way of implementing models for the
detectionof splice sites.
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