• 제목/요약/키워드: mechanical properties.

검색결과 17,329건 처리시간 0.049초

Numerical investigation of mechanical properties of nanowires: a review

  • Gu, Y.T.;Zhan, H.F.;Xu, Xu
    • Interaction and multiscale mechanics
    • /
    • 제5권2호
    • /
    • pp.115-129
    • /
    • 2012
  • Nanowires (NWs) have attracted intensive researches owing to the broad applications that arise from their remarkable properties. Over the last decade, immense numerical studies have been conducted for the numerical investigation of mechanical properties of NWs. Among these numerical simulations, the molecular dynamics (MD) plays a key role. Herein we present a brief review on the current state of the MD investigation of nanowires. Emphasis will be placed on the FCC metal NWs, especially the Cu NWs. MD investigations of perfect NWs' mechanical properties under different deformation conditions including tension, compression, torsion and bending are firstly revisited. Following in succession, the studies for defected NWs including the defects of twin boundaries (TBs) and pre-existing defects are discussed. The different deformation mechanism incurred by the presentation of defects is explored and discussed. This review reveals that the numerical simulation is an important tool to investigate the properties of NWs. However, the substantial gaps between the experimental measurements and MD results suggest the urgent need of multi-scale simulation technique.

난기류 혼합법을 이용한 목섬유-열가소성 섬유 복합재에 관한 연구(II) - 공정변수가 복합재의 기계적 성질에 미치는 영향 - (Wood Fiber-Thermoplastic Fiber Composites by Turbulent Air Mixing Process(II) - Effect of Process Variables on The Mechanical Properties of Composites -)

  • 윤형운;이필우
    • Journal of the Korean Wood Science and Technology
    • /
    • 제25권3호
    • /
    • pp.58-65
    • /
    • 1997
  • This research was carried out to evaluate the effect of process variables on mechanical properties of the wood fiber-thermoplastic fiber composites by turbulent air mixing method. The turbulent air mixer used in this experiment was specially designed in order to mix wood fiber and thermoplastic polypropylene or nylon 6 fiber, and was highly efficient in the mixing of relatively short plastic fiber and wood fiber in a short time without any trouble. The adequate hot - pressing temperature and time in our experimental condition were $190^{\circ}C$ and 9 minutes in 90% wood fiber - 10% polypropylene fiber composite and $220^{\circ}C$ and 9 minutes in 90% wood fiber 10% nylon 6 fiber composite. Both in the wood fiber - polypropylene fiber composite and wood fiber- nylon 6 fiber composite, the mechanical properties improved with the increase of density. Statistically, the density of composite appeared to function as the most significant factor in mechanical properties. Within the 5~15% composition ratios of polypropylene or nylon 6 fiber to wood fiber, the composition ratio showed no significant effect on the mechanical properties. Bending and tensile strength of composite, however, slightly increased with the increase of synthetic fiber content. The increase of mat moisture content showed no significant improvement of mechanical properties both in wood fiber - polypropylene fiber composite and wood fiber nylon 6 fiber composite. Wood fiber - nylon 6 fiber composite was superior in th mechanical strength to wood fiber-polypropylene fiber composite, which may be related to higher melt flow index of nylon 6 fiber(22g/10min) than of polypropylene fiber(4.3g/10min).

  • PDF

한산모시의 역학적 특성 및 태에 관한 연구(제2보)-푸새효과에 대하여- (Mechanical Properties and Fabric Handle of Hansan Ramie (PartII))

  • 홍지명;유효선
    • 한국의류학회지
    • /
    • 제22권7호
    • /
    • pp.862-871
    • /
    • 1998
  • In this study, the effect of sizing on the physical and mechanical characteristics of Hansan ramie was studied. 2 kinds of Hansan ramie were used for this study and one kind of the chinese ramie was also used for comparing with the characteristics of Hansan ramies. The following results were obtained from this experimental study. The wrinkle recovery angle was gradually reduced according to the increasing of the concentration of sizing agent. As the size agent could easily penetrate between the thick yarms, the effect of sizing on the wrinkle recovery angle was evident on the Chinese and Hansan coarse ramie. The result of KES-F system showed that the sizing affected much on the bending properties and shear properties. As the size concentration was increased the shear properties were increased more evidently on the Chinese and Hansan coarse ramie. The result of KES-F system showed that the sizing affected much on the bending properties and shear properties. As the size concentration was increased the shear properties were increased more evidently than the bending properties. The other mechanical properties didn't changed much by sizing. The calculated primary hand value also showed that the ramie became more stiff after sizing.

  • PDF

워셔블 울과 노멀 울편성물의 구성특성에 따른 질감 및 감성이미지 (제1보) -구성특성에 따른 주관적 평가, 역학적 특성과 객관적 태의 관계를 중심으로- (Textures and Sensible Images on Structural Properties of Washable Wool and Normal Wool Knit Fabrics (Part I) -Focus on the Relationship of Subjective Evaluation, Mechanical Properties and Objective Hand Measurements and Preferences-)

  • 김현아;유효선
    • 한국의류학회지
    • /
    • 제35권11호
    • /
    • pp.1362-1376
    • /
    • 2011
  • This study examines the effect of the structural properties of F/W wool knit fabrics for woman's knitwear on the perceptions of textures and sensible images of consumers and present basic data for textile designing by analyzing the relationship among the structural properties, mechanical properties, objective hand measurements and preferences. A total of 12 kinds of knit fabrics were prepared and investigated in terms of the differences in the subjective, mechanical properties and objective hand measurements according to the structural properties of knit fabrics. The data were analyzed by t-test. The subjective hand attributes of wool knits through factor analysis are categorized into 6 factors. In particular, the 'active/comfort' factor is a meaningful result that reflects the unique characteristics of knit fabrics compared to woven fabrics. Mechanical properties and objective hand measurements have a greater effect on textures than on sensible images; in addition, the structural properties, 'gauge' was the most important factor to influence the subjective evaluation.

Antibacterial Activity and Mechanical Properties of Poly(Lactic-Acid) Composites Containing Zeolite-type Inorganic Bacteriocide

  • Park, Yuri;Park, Tae-Hee;Lee, Rami;Baek, Jong-sung;Jhee, Kwang-Hwan;Bang, Daesuk
    • Elastomers and Composites
    • /
    • 제52권3호
    • /
    • pp.201-210
    • /
    • 2017
  • We studied the antibacterial effect and mechanical properties of PLA composites with in organic porous zeolite-type bacteriocides. The specimens were prepared by an intermeshing co-rotating twin screw extruder using different contents of inorganic bacteriocide. The degree of dispersion of the in organic bacteriocide in the PLA composite was confirmed by FE-SEM. The contents of Ag and Zn in the composite were also investigated by energy dispersive spectroscopy at different concentrations of the inorganic bacteriocide. The antibacterial effects were analyzed by turbidity analysis, shaking culture, and drop-test. The mechanical properties, such as the tensile and flexural properties, impact strength, and physical properties, were also investigated. As the content of inorganic bacteriocide increased, the antibacterial activity was increased, especially against Staphylococcus aureus. Mechanical properties, namely, tensile strength, elongation, flexural strength, and impact strength, tended to decrease with an increase in inorganic bacteriocide content, but the tensile and flexural modulus increased.

Effect of centrifugation on the structure and properties of silk sericin

  • Park, Chun Jin;Um, In Chul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제33권2호
    • /
    • pp.144-148
    • /
    • 2016
  • Recently, silk sericin has been studied extensively for biomedical and cosmetic applications because of its unique properties, including UV resistance and wound healing ability. For use in applications, sericin is fabricated in various forms including films and gels. However, the mechanical properties of sericin are too weak. In this basic study on improving the mechanical properties of sericin, a silk sericin aqueous solution was separated into two layers by centrifugation. The solution viscosity, molecular conformation, and mechanical properties of each separation layer of the sericin were examined. Sericin from the lower layer had a higher solution viscosity and film mechanical properties (strength and strain) than that from the upper layer, implying that sericin from the lower layer had a higher molecular weight than that from the upper layer. The molecular conformation of the sericin films varied depending on the casting solvent. In aqueous solution, the sericin film from the lower layer showed a ${\beta}$-sheet conformation, whereas that from the upper layer displayed a random coil conformation. All the sericin films showed a highly ${\beta}$-sheet-crystallized state when cast in formic acid, regardless of the separation layer.

플라즈마 처리가 탄소섬유강화 복합재료의 기계적특성에 미치는 영향 (Effect of Plasma Treatment on Mechanical Properties of Carbon Fibers-reinforced Composites)

  • 오진석;이재락;박수진
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.80-83
    • /
    • 2005
  • In this work, effects of oxygen plasma on surface characteristics of carbon fibers were investigated in mechanical properties interfacial of carbon fibers-reinforced composites. The surface properties of the carbon fibers were determined by acid/base values, FT-IR, and X-ray photoelectron spectroscopy (XPS). Also, the mechanical properties of the composites were studied in and critical stress intensity factor ($K_{IC}$) and critical strain energy release rate mode II ($G_{IIC}$) measurements. As experimental results, the $O_{lS}/C_{lS}$ ratio of the carbon fiber surfaces treated by oxygen plasma was increased compared to that of untreated ones, possibly due to development of oxygen-containing functional groups. The mechanical properties of the composites, including $K_{IC}$ and $G_{IIC}$ had been improved in the oxygen plasma on fibers. These results could be explained that the oxygen plasma was resulted in the increase of the adhesion of between fibers and matrix in a composite system.

  • PDF

Preparation, structure, and properties of cellulose nanofibril/silk sericin composite film

  • Jang, Mi Jin;Park, Byung-Dae;Kweon, HaeYong;Jo, You-Young;Um, In Chul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제31권1호
    • /
    • pp.1-6
    • /
    • 2015
  • Recently, sericin has attracted increasing attention in biomedical and cosmetic research because of its useful properties including acceleration of wound healing, improvement of cell attachment, and inhibition of ultraviolet-B induced apoptosis. However, sericin films have poor mechanical properties, which restricts the application to those fields. In this study, cellulose nanofibril (CNF)/sericin composite films were fabricated by solvent casting, and the effects of ultrasonication time and CNF content on the solution turbidity, molecular conformation, and film mechanical properties of sericin film were examined. As the ultrasonication time increased, the turbidity of the CNF/sericin suspension decreased. Conversely, as the CNF content increased, the turbidity increased. However, ${\beta}$-sheet crystallization and mechanical properties remained almost unchanged by varying the ultrasonication time and CNF content, indicating that CNF is not effective to improve the mechanical properties of sericin films.

Stress-strain relationships for steel fiber reinforced self-compacting concrete

  • Aslani, Farhad;Natoori, Mehrnaz
    • Structural Engineering and Mechanics
    • /
    • 제46권2호
    • /
    • pp.295-322
    • /
    • 2013
  • Steel fiber reinforced self-compacting concrete (SFRSCC) is a relatively new composite material which congregates the benefits of self-compacting concrete (SCC) technology with the profits derived from the fiber addition to a brittle cementitious matrix. Steel fibers improve many of the properties of SCC elements including tensile strength, toughness, energy absorption capacity and fracture toughness. Modification in the mix design of SCC may have a significant influence on the SFRSCC mechanical properties. Therefore, it is vital to investigate whether all of the assumed hypotheses for steel fiber reinforced concrete (SFRC) are also valid for SFRSCC structures. Although available research regarding the influence of steel fibers on the properties of SFRSCC is limited, this paper investigates material's mechanical properties. The present study includes: a) evaluation and comparison of the current analytical models used for estimating the mechanical properties of SFRSCC and SFRC, b) proposing new relationships for SFRSCC mixtures mechanical properties. The investigated mechanical properties are based on the available experimental results and include: compressive strength, modulus of elasticity, strain at peak compressive strength, tensile strength, and compressive and tensile stress-strain curves.

DV-Xα 분자궤도법으로 설계한 생체용 Ti-Ag-Zr 합금 특성 평가 (A Study on the Properties of Design for the Biomaterial Ti-Ag-Zr Alloys Using DV-Xα Molecular Orbital Method)

  • 백민숙;윤동주;김병일
    • 한국재료학회지
    • /
    • 제24권4호
    • /
    • pp.175-179
    • /
    • 2014
  • Ti and Ti alloys have been extensively used in the medical and dental fields because of their good corrosion resistance, high strength to density ratio and especially, their low elastic modulus compared to other metallic materials. Recent trends in biomaterials research have focused on development of metallic alloys with elastic modulus similar to natural bone, however, many candidate materials also contain toxic elements that would be biologically harmful. In this study, new Ti based alloys which do not contain the toxic metallic components were developed using a theoretical method (DV-$X{\alpha}$). In addition, alloys were developed with improved mechanical properties and corrosion resistance. Ternary Ti-Ag-Zr alloys consisting of biocompatible alloying elements were produced to investigate the alloying effect on microstructure, corrosion resistance, mechanical properties and biocompatibility. The effects of various contents of Zr on the mechanical properties and biocompatibility were compared. The alloys exhibited higher strength and corrosion resistance than pure Ti, had antibacterial properties, and were not observed to be cytotoxic. Of the designed alloys' mechanical properties and biocompatibility, the Ti-3Ag-0.5Zr alloy had the best results.