References
- E. T. H. Vink, K. R. Rabago, D. A. Glassner, and P. R. Gruber, "Applications of life cycle assessment to Natural WorksTM polylactide (PLA) production", Polym. Degra. & Stabil., 80, 403 (2003). https://doi.org/10.1016/S0141-3910(02)00372-5
- D. H. Cho and H. J. Kim, "Naturally cyclable biocomposite", Elast. Compos., 44, 13 (2009).
- C. Marambio-Jones and E. M. V. Hoek, "A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment", J. Nanopart. Res., 12, 1531 ( 2010). https://doi.org/10.1007/s11051-010-9900-y
- Antonio Martines-Abad, Jose M. Lagaron, and Maria J. Ocio, "Characterization of transparent silver loaded poly(L-lactide) films produced by melt-compounding for the sustained release of antimicrobial silver ions in food appications", Food Control., 43, 238 (2014). https://doi.org/10.1016/j.foodcont.2014.03.011
-
J. Husheng, H. Wesheng, W. liqiao, X. Bingshe, and L. Xuguang, "The structures and antibacterial properties of nano-
$SiO_2$ supported silver/zinc-silver materials", Dent. Mater., 24, 244 (2008). https://doi.org/10.1016/j.dental.2007.04.015 - M. Rai, A. Yadav, and A. Gade, "Silver nanoparticles as a new generation of antimicrobials", Biotechnol. Adv., 27, 76 (2009). https://doi.org/10.1016/j.biotechadv.2008.09.002
- D. R. Monterio, L. F. Group, A. S. Takamiya, A. C. Ruvollo- Filho, E. R. de Camarogo, and D. B. Barbosa, "The growing importance of materials that pervent microbial adhension: antimicrobial effect of medical devices containing silver", Int. J. Antimicrob. Agents., 34, 103 ( 2009). https://doi.org/10.1016/j.ijantimicag.2009.01.017
- P. Spacciapoli, D. Buxton, D. Rothstein, and P, Friden, "Antimicrobial activity of silver nitrate against periodontal pathogens", J. Periodont. Res., 36, 108 (2001). https://doi.org/10.1034/j.1600-0765.2001.360207.x
- J. Y. Kim, T. Y. Kim, and J. Y. Yoon, "Antimicrobial Activity and Mechanism of Silver", J. Korean Ind. Eng. Chem., 20, 251 (2009).
- J. Y. Roh, , S. J. Yi., K. Park, K. H. Chung, D. Y. Ryu, and J. Chio, "Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics", Environ. Sci. Technol., 43, 3933 (2009). https://doi.org/10.1021/es803477u
- S. Y. Liau, D. C. Read, W. J. Pugh, J. R. Furr, and A. D. Russell, "Interaction of silver-nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions", Lett. Appl. Microbiol., 25, 279 (1997). https://doi.org/10.1046/j.1472-765X.1997.00219.x
- Sindhu, P. D., Punalur, J. S., Sudheer, K., Amitava, M. and Natrajan, C. "Toxic behavior of silver and zinc oxide nanoparticles on environmental microorganisms," J. Basic Microbiol., 54, 916 (2014). https://doi.org/10.1002/jobm.201200316
- J. H. Lee, H. J. Seo, T. W. Son, and H. S. Lim, "Preparation and properties of antimicrobial zinc alginate films according to solution concentration", Polym. Korea, 37, 677 (2013). https://doi.org/10.7317/pk.2013.37.6.677
- S. H. Park, J. Y. Lee, J. H. Choi, T. H. Park, S. B. Moon, H. S. Lee, D. S. Bang, S. A. Yang, and K. H. Jhee, "Antimicrobial Activity and Mechanism of Polyvinyl Chloride Composite Containing Inorganic Bacteriocide", Elast. Compo., 50, 223 (2015). https://doi.org/10.7473/EC.2015.50.3.223
- M. M. Cowan, K. Z. Abshire, S. L. Houk, and S. M. Evans, "Antimicrobial efficacy of a silver-zeolite matrix coating on stainless steel", J. Ind. Microbiol. Biotechnol., 30, 102 (2003). https://doi.org/10.1007/s10295-002-0022-0
- G. Seyfriendsberger, K. Rametsteiner, and W. Kern, "Polyethylene compounds with antimicrobial surface properties", Eur. Poym. J., 42, 3383 (2006). https://doi.org/10.1016/j.eurpolymj.2006.07.026