• 제목/요약/키워드: mechanical life

검색결과 2,993건 처리시간 0.039초

자동차 차체용 알루미늄 합금 판재의 기계적특성과 부식피로수명 (A mechanical proprties and fatigue life of aluminum alloy sheets for autobodies)

  • 박인덕;윤옥남;남기우
    • 한국해양공학회지
    • /
    • 제11권2호
    • /
    • pp.57-69
    • /
    • 1997
  • The objetive of this study is to compare the mechanical proprties of 6000 series Al-Mg-Si aluminum alloy (AC120) with 5000 series Al-Mg aluminum alloy (TG25), and to investigate the influence of corrosion solution for fatigue life. Comparing of TG25 and AC120 alloy sheets, TG25 alloy sheets showing higher plastic ratio and total elongation have better formability than AC120 alloy sheets. The hardness of nugget area was a little higher than that of base metal area. Also, grain coarsening was observed in HAZ(Heat Affected Zone). In a corrosion fatigue experiment, the fatigue life decreased as concentration increased, when a dipping time was constant. The life decreased as dippling time increased, when a concentration was constant.

  • PDF

회귀분석에 의한 $Si_3N_4$세라믹 절삭공구의 공구수명 추정 (Estimation of Tool life by Simple & Multiple Linear Regression Analysis of $Si_3N_4$ Ceramic Cutting Tools)

  • 안영진;권원태;김영욱
    • 한국공작기계학회논문집
    • /
    • 제13권4호
    • /
    • pp.23-29
    • /
    • 2004
  • In this study, four kinds of $Si_3N_4$-based ceramic cutting tools with different sintering time were fabricated to investigate the relation among mechanical properties, grain size and tool life. They were used to turn gray cast iron at a cutting speed of 330m/min and depth of cut of 0.5mm and 1mm in dry, continuos cutting conditions. Multiple linear regression model was used to determine the relations among the mechanical property, grain size and the density. It was found that the combination of hardness and fracture toughness showed a good relation with tool life. It was also shown that hardness was the most important single element for the tool life.

크랭크 레버형 평행개폐 공기압 척의 수명 분석 (Life Analysis of Parallel Opening Type Pneumatic Chuck)

  • 강보식;송창섭;장지성;지상원
    • 한국정밀공학회지
    • /
    • 제26권9호
    • /
    • pp.96-102
    • /
    • 2009
  • In this study, performs analysis of the life of parallel opening type pneumatic chucks that are usually applied in the factory automation line. Pneumatic chucks have complicated failure cause because they are organized as a complex of various elements. Therefore, we analyzed the main failure mode of pneumatic chuck, and then performed life test and performance test according to the international standards. On the basis of these processes, shape parameter of pneumatic chuk is proposed that is the main factor for the calculation of zero failure test time for the reliability of pneumatic chuck and their data analysis of life distribution.

거친 표면의 접촉피로 수명예측 (The Contact Fatigue Life Analysis of Rough Surfaces)

  • 추효준;이상돈;조용주
    • Tribology and Lubricants
    • /
    • 제21권3호
    • /
    • pp.136-141
    • /
    • 2005
  • Analytical model to calculate the contact fatigue life of rough surface is presented in this paper. The effect of surface roughness can be calculated by this model. Computational method and the theoretical basis are also discussed. Contact stresses are obtained by contact analysis of a semi-infinite solid based on the use of influence functions; the subsurface stress field is obtained using rectangular patch solutions. Mesoscopic multiaxial fatigue criterion which can yield satisfactory results for non-proportional loading is then applied to predict fatigue damage. Suitable counting method and damage rule were used to calculate the fatigue life of random loading caused by rough surface. As a result of analysis the relationship between the life and the roughness as well as the most probable depth of the crack initiation is calculated.

블래더와 하우징으로 구성된 축압기의 수명피로예측 (Life Fatigue Prediction of an Accumulator Composed of Bladder and Housing)

  • 김대유;이건희;허장욱
    • 한국기계가공학회지
    • /
    • 제17권5호
    • /
    • pp.58-63
    • /
    • 2018
  • Recently in weapon systems development, the importance of reliability has been emphasized due to the increase in complexity and the rapid development of key components and components. Accordingly, the importance of lifespan testing is increased. However, lifespan testing to verify the reliability of a system is costly and takes a lot of time. Therefore in this paper, it was demonstrated that the most critical item of a bladder type accumulator is the bladder. Fatigue life is sensitive to temperature and pressure, with temperature having more impact. The fatigue life of the bladder was estimated to be 18,140 hr through fatigue analysis, which satisfies the required life expectancy of 10,000 hr.

유지시간 효과를 고려한 12Cr 내열강의 열피로 및 저주기 피로 특성 (Thermal-Mechanical and Low Cycle Fatigue Characteristics of 12Cr Heat Resisting Steel with Hold Time Effects)

  • 하정수;고승기;옹장우
    • 한국자동차공학회논문집
    • /
    • 제3권1호
    • /
    • pp.1-12
    • /
    • 1995
  • Isothermal and thermal-mechanical fatigue characteristics of 12Cr heat resisting steel used for high temperature applications were investigated including hold time effects. Isothermal low cycle fatigue test at $600^{\circ}C$ and in-phase, out-of-phase thermal-mechanical fatigue test at 350 to $600^{\circ}C$ were conducted using smooth cylindrical hollow specimen under strain-control with total strain ranges from 0.006 to 0.015. Regardless of thermal-mechanical and isothermal fatigue tests, cyclic softening behavior was observed and much more pronounced in the thermal-mechanical fatigue tests with hold times due to the stress relaxation during the hold time. The phase difference between temperature and strain in thermal-mechanical fatigue tests resulted in significantly shorter fatigue life for out-of-phase compared to in-phase. The differences in fatigue lives were dependent upon the magnitudes of plastic strain ranges and mean stresses. During the hold time in the strain-controlled fatigue tests, the increase in the plastic strain range and the stress relaxation were observed. It appeared that the increase in plastic strain range per cycle and the introduction of creep damage made important contributions to the reduction of thermal-mechanical fatigue life with hold time, and the life reduction tendency was more remarkable in the in-phase than in the out-of-phase thermal-mechanical fatigue. Isothermal fatigue tests performed under the combination of fast and slow strain rates at $600^{\circ}C$ showed that the fatigue life decreased as the strain rate and frequency decreased,especially for the low strain ranges.

  • PDF

원공조치를 가진 탄소섬유강화 플라스틱 적층판의 피로수명에측 (Fatigue Life Prediction of Circular Notched CFRP Laminates)

  • 허재석;황운봉;박현철;한경섭
    • 대한기계학회논문집A
    • /
    • 제20권3호
    • /
    • pp.832-842
    • /
    • 1996
  • Fatigue life prediction and fatigue behavior of circular notched carbon fiber reinforced plastic laminates are presented. Point and average stress criteria by Whitney and Nuismer are generalized to fatigue fracture criteria for notched laminates. Residual strength degradation model and the assumptions on the stress redistribution are introduced during the derivation of prediction equations. S-N curve, Basquin's relation, and H and H's FLPE1 are chosen for evaluation of residual strength of unnotched laminates and six prediction equations are derived. Experiments are performed using Graphite/Epoxy laminates whose fiber orientation is $[0$^\circ$/+45$^\circ$/-45$^\circ$/90$^\circ$]s. Presented prediction equations are reasonably close to experimental data and proposed appoach is found to be suitable to predict fatigue life of notched composite laminates.

Consideration of the Frictional Force on the Crack Surface and Its Implications for Durability of Tires

  • Park, K.S.;Kim, T.W.;Jeong, H.Y.;Kim, S.N.
    • Journal of Mechanical Science and Technology
    • /
    • 제20권12호
    • /
    • pp.2159-2167
    • /
    • 2006
  • In order to find out a physical quantity which controls the fatigue life of a structure and to predict the fatigue life of tires, a finite element simulation methodology to use the cracking energy density (CED) and the virtual crack closure technique (VCCT) was proposed and applied to three different tires of a similar size. CED was calculated to predict the location of a crack initiation, and VCCT was used to obtain the strain energy release rate (SERR) at the tip of an initiated crack. Finite element simulations showed that SERR oscillated in the circumferential direction with its minimum occurring just before the contact zone and its maximum occurring just after the center of the contact zone, and SERR was affected significantly by the frictional force acting on the crack surface. In addition, a durability test was conducted to measure the fatigue life of the three tires. The comparison of SERR values with the test data revealed that the fatigue life increased as the amplitude of SERR decreased or as the R-ratio of SERR increased.

CRG 시스템의 접촉 피로수명 (Contact Fatigue Life for CRG System)

  • 남형철;김창현;권순만
    • 대한기계학회논문집A
    • /
    • 제36권11호
    • /
    • pp.1391-1397
    • /
    • 2012
  • 하이포 트로코이드 기반의 CRG(Cam ring gear) 시스템은 핀 또는 롤러 치형을 가지는 기어와 공액인 캠 링기어로 구성된 내접기어 시스템이다. 본 논문에서는 CRG 시스템의 엄밀 치형설계를 바탕으로 기어 치면에서의 접촉특성을 분석하였으며 형상설계변수인 치형수정계수에 따른 기어의 내구수명을 검토하였다. 결과적으로 치형수정계수의 증가를 통해 기 설계된 CRG 시스템에 영향을 미치지 않으면서 기어의 접촉 피로수명을 향상시킬 수 있다.

몬테카르로 시뮬레이션에 의한 $SIC_w$/Al 복합재료의 피로수명에측 (Fatigue Life Prediction of $SIC_w$/Al Composites by Using the Monte-Carlo Simulation)

  • 안정주;권재도;김상태
    • 대한기계학회논문집A
    • /
    • 제20권5호
    • /
    • pp.1552-1561
    • /
    • 1996
  • It requires uch time and cost to obtain the fatigue crack growth life and fatigue crack growth path morphlogy from the fatigue crack growth tests. In this study, the Monte-Carlo simulation program was developed to predict the fatigue crack growth lofe and fatigue crack growth path morphology of metal matrix composites. Fatigue crack growth lives of 5%, 10%, 15%, 20%, 25% and 30% $SiC_w$/Al composites were predicted by usign the Monte-Carlo Simulation. And the fatigue crack growth lives of 25% $SiC_w$/Al and Almatrix from Monte-carlo simulation were compared with fatigue life from experiments in order to verify the accuracy of Monte-Carlo Simulation program.