• 제목/요약/키워드: mechanical cutting

검색결과 1,258건 처리시간 0.023초

Cutting Force Analysis Under Chatter Condition with a Worn Tool (채터상황에서 마모된 공구가 받는 절삭력 해석)

  • 권원태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • 제18권2호
    • /
    • pp.292-301
    • /
    • 1994
  • The resultant cutting force during machining with a worn tool is viewed as a decomposition of the cutting force into a cutting force component related to chip removal from the workpiece and into a component dependent on the contact force between the tool flank's wear land and the workpiece. The shear line method, in which the cutting force is considered proportional to the length of the shear line, is used to calculate the cutting force component for the removal of the chip, while the elastic effect of the workmaterial on the tool is taken into consideration to analyze the effect of tool flank wear. The predicted resultant cutting force, expressed as the sum of both components, is compared to experimental data obtained during wave-on-wave cutting.

A Study on the Cutting Fluid Effectiveness in Mechanical and Thermal Terms Simultaneously for Environmentally Conscious Machining (환경친화적 기계가공을 위한 기계적$\cdot$열적측면에서의 절삭유제 사용효과에 관한 연구)

  • Mo, Yong-Gu;Hwang, Jun;Jung, Eui-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제17권7호
    • /
    • pp.90-97
    • /
    • 2000
  • This paper presents a methodology to analyze the cutting fluid effectiveness in mechanical and thermal terms simultaneously using finite element method and experimental work. Cutting fluid plays many roles in metal cutting process. Mechanically-thermally coupled effectiveness of cutting fluids affect to friction coefficient at tool-workpiece interface and cutting temperature and chip control, surface finish, tool wear and form accuracy. Through this study, it can be explained that the critical behavior of cutting fluids will be able to apply optimal environmentally conscious machining process.

  • PDF

A Study on Cutting Mechanism and Heat Transfer Analysis in Laser Cutting Process (FDM을 이용한 레이저 절단 공정에서의 절단 메카니즘 및 절단폭의 해석)

  • 박준홍;한국찬;나석주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • 제17권10호
    • /
    • pp.2418-2425
    • /
    • 1993
  • A two-dimensional transient heat transfer model for reactive gas assisted laser cutting process with a moving Gaussian heat source is developed using a numerical finite difference technique. The kerf width, melting front shape and temperature distribution were calculated by using the boundary-fitted coordinate system to handle the ejection of workpiece material and heat input from reaction and evaporation. An analytical solution for cutting front movement was adopted and numerical simulation was performed to calculate the temperature distribution and melting front thickness. To calculate the moving velocity of cutting front, the normal distribution of the cutting gas velocity was used. The kerf width was revealed to be dependent on the cutting velocity, laser power and cutting gas velocity.

Cutting Force Control of Turning Process Using Fuzzy Theory (퍼지이론을 이용한 선삭의 절삭력제어)

  • 노상현;정선환;김교형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • 제18권1호
    • /
    • pp.113-120
    • /
    • 1994
  • The dynamic characteristics of turning processes are complex, non-linear and time-varying. Consequently, the conventional techniques based on crisp mathematical model may not guarantee cutting force regulation. This paper presents a fuzzy controller which can regulate cutting force in turning process under varying cutting conditions. The fuzzy control rules are extablished from operator experience and expert knowledge about the process dynamics. Regulation which increases productivity and tool life is achieved by adjusting feedrate according to the variation of cutting conditions. The performance of the proposed controller is evaluated by cutting experiments in the converted conventional lathe. The results of experiments show that the proposed fuzzy controller has a good cutting force regulation capability in spite of the variation of cutting conditions.

Cutting Characteristics of Plasma Source Son Implanted Tungsten Carbide Tool (플라즈마 이온주입에 의해 표면 개질한 초경공구의 가공특성)

  • Kang, Seong-Ki;Wang, Duck-Hyun;Kim, Won-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제27권1호
    • /
    • pp.33-40
    • /
    • 2010
  • In this research, the effects for surface Improvement of plasma ion implanted carbide endmill tools were observed by measuring cutting forces and tools wear affecting surface roughness in high speed cutting. From the 2nd ion mass analysis, the oxidation layer was found to be built up by sputtering. The residual gas contamination of oxygen was found to be contained impurities in nitrogen gas. The plasma implanted ion was found to be spreaded, especially the nitrogen was implanted up to 150nm depth as impressed voltage and ion implanting time. It is analyzed as bring surface improvement by spreading deeply forming oxidation on surface. The factors in Analysis of Variance(ANOVA) about mutuality cause reference of cutting force. The cutting force Fx is affected by the interaction of spindle rpm and federate, the cutting force Fy is influenced by spindle rpm and time injected ion, and cutting force Fz is affected by the interaction of impressed voltage and feedrate. Also, it was found that the cutting forces of implanted tools become lower and the surface roughness is improved by the effect of nitrogen according to the implantation.

Effect of Composition on Cutting Characteristics and Reliability Analysis of Ti(C,N) Cermet Tool (Ti(C,N)계 서메트 공구의 조성변화에 따른 절삭성능 및 신뢰도 분석)

  • Park, June-Seuk;Kim, Seong-Won;Kwon, Won-Tae;Kang, Shin-Hoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제26권11호
    • /
    • pp.2336-2341
    • /
    • 2002
  • When WC and group IV elements are added to Ti(C,N)-Ni cermet, microstructures of the cermet is changed. The change effects directly on the property of the material. In this study, the amount of WC and group IV elements of Ti(C,N) cermet tool was investigated. The composition of WC was changed from 5 to 20wt% to determine the effect of WC on the cutting performance of cermet tool. The more WC was added, the longer the tool life of the cermet tool was. The cermet with lwt% ZrC and l4wt% WC showed the best cutting performance among the investigated cermet tools. The cutting performance of cermet cutting tools suggests the possibility in interrupted cutting for reliability test experimentation was performed repeatedly with $Ti(C_{0.7},N_{0.3})- l4WC-1ZrC-20Ni$ cermet tool machining SCM440. The flank wear of cermet cutting tool at given time condition is suitable for Normal distribution and Log normal distribution by Chi squared test.

Effect of Cutting Fluid on the Metal-Cutting Mechanism (절삭유제가 금속절삭기구에 미치는 영향에 관한 연구)

  • Seo, Nam-Seob
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제2권2호
    • /
    • pp.69-75
    • /
    • 1985
  • The object of this study is to discuss the effect of cutting fluid on the mechanism of chip formation in orthogonal cutting. Rehbinder effect has been known as a phenomenon, the reduction of mechanical strength, when the metal is exposed in a polar organic environment or the surface of metal is coated with some polar organic substances. About the cause of Rehbinder effect there have been many different ideas by Rehbinder, Merchant, Shaw, Sakakida and etc. In this report, the effects of surface active medium (magic ink) upon the mechanism of chip formation on the orthogonal cutting of copper and the mechanical properties of the work material are experimentally discussed with constant rake angle. Under the condition of polar organic environment the experimental results are as follows; 1) The chip thickness becomes thinner and slip line pitch on the free surface of chip becomes smaller than that of dried cutting area. 2) The order of alternation of cutting ratio was changed. 3) The friction angle on the tool face is not affected by the depth of cut. 4) The cutting force and shear strain on the shear plane decrease remarkably, therefore the work material must be embrittled under polar organic environment.

  • PDF

Machinability Evaluation with Cutting Direction in High Speed Machining of Free Form Surface through Ball End Milling (볼 엔드밀을 통한 자유곡면의 고속가공에서 절삭방향에 따른 가공성 평가)

  • Kim, Gyeong-Gyun;Gang, Myeong-Chang;Lee, Deuk-U;Kim, Jeong-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제18권2호
    • /
    • pp.84-89
    • /
    • 2001
  • In recent years, there is increasing demand of esthetic design and complex function in aerospace, automobile and die/mold industry, which brings into limelight high-precision, high-efficient machining of sculptured surface. This paper deals with the establishment of the optimal tool path on free form surface in high speed ball end milling. Ball end milling is widely used for free form surface die and mold. In this machining, the cutting direction was changed with tool path. The cutting characteristics, such as cutting force and surface form are varied according to the variation of cutting directions. In this paper, the optimal tool path with down cutting in free form surface cutting is suggested.

  • PDF

A study on the behaviour of cutting heat at high speed cutting work (고속 절삭가공시 절삭열의 거동에 관한 연구)

  • Joo, Ho-Youn;Lee, Yung-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제22권2호
    • /
    • pp.476-481
    • /
    • 1998
  • It is generally known that in high speed work with more than 1000 m/min cutting speed, according to the work material phenomenon of tool wearing is increased due to the some produced neat and as a result this makes the cutting work impossible. In this study, the high speed cutting is possible because of the different cutting from the presently known fact. That is, most of generated heats influence on the quantity flowing in chip greatly. Therfore, this study aims at the behavior of cutting heat generated at high speed cutting. It makes clearly the euqntity of heat flowing in chip, work materal, tool, and inflowing ratio. The cutting mechanism varies by the changing of cutting depth, slant face and contact area through this study. And it is exammined that the influence of heat of all parts is greatly due to the change the contact length of clearance face. It is confirmed from the exp[eriment that the inflowing heat ratio influences the cutting speed greatly and the heat of clearance face can not be disregarded.

A Study on Photoelastic Fringe Patterns in Cutting Proces(I) (切削加工 의 光彈性的 現象 에 관한 硏究( I ))

  • 김정두;이용성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • 제7권2호
    • /
    • pp.161-167
    • /
    • 1983
  • In this study the phenomenon of cutting stress which arises on cutting tools and work pieces in cutting process is investigated by rake angle of cutting tools and feed for this measurement, P$_{s}$-1 (high modulus, photolastic Inc.) was used as a cutting tool, P$_{s}$-3 (medium modulus, photolastic Inc.) was used as work piece and reduction apparatus was attached to the head stock, and orthogonal cutting was adapted as a cutting method and transparent glass was used to block the strain in the orientation of thickness. The followings are the results of this study. (1) Photoelastic experimental equipments have made it possible to make dynamic measurement and analyze stress distribution in cutting tool and work piece surface which has hitherto been conducted only in static measurement and analyzing method. (2) The maximum stress arising at tools and work pieces in cutting process is on the tool edge tip, and the maximum stress arising on the tip of cutting tools is equal to that on the contacting area of work pieces in values. (3) The distributions of maximum shear stress on certain parts of the cutting tools and work pieces are as follows; for cutting tools, .alpha.=12.deg., .alpha.=0.deg., .alpha.=-12.deg. in order, and for work pieces, .alpha.=-12.deg., .alpha.=0.deg., .alpha.=12.deg. in opposite order.der.