• Title/Summary/Keyword: mechanical behavior and fracture characteristics

Search Result 151, Processing Time 0.031 seconds

Analysis of quasi-brittle materials at mesoscopic level using homogenization model

  • Borges, Dannilo C;Pituba, Jose J C
    • Advances in concrete construction
    • /
    • v.5 no.3
    • /
    • pp.221-240
    • /
    • 2017
  • The modeling of the mechanical behavior of quasi-brittle materials is still a challenge task, mainly in failure processes when fracture and plasticity phenomena become important actors in dissipative processes which occur in materials like concrete, as instance. Many homogenization-based approaches have been proposed to deal with heterogeneous materials in the last years. In this context, a computational homogenization modeling for concrete is presented in this work using the concept of Representative Volume Element (RVE). The material is considered as a three-phase material consisting of interface zone (ITZ), matrix and inclusions-each constituent modeled by an independent constitutive model. The Representative Volume Element (RVE) consists of inclusions idealized as circular shapes symmetrically and nonsymmetrically placed into the specimen. The interface zone is modeled by means of cohesive contact finite elements. The inclusion is modeled as linear elastic and matrix region is considered as elastoplastic material. A set of examples is presented in order to show the potentialities and limitations of the proposed modeling. The consideration of the fracture processes in the ITZ is fundamental to capture complex macroscopic characteristics of the material using simple constitutive models at mesoscopic level.

Moment-Curvature behavior of steel and GFRP reinforced beam using AE and DIC Techniques

  • Sharma, Gaurav;Sharma, Shruti;Sharma, Sandeep K.
    • Structural Engineering and Mechanics
    • /
    • v.84 no.2
    • /
    • pp.253-268
    • /
    • 2022
  • Using non-destructive Acoustic Emission (AE) and optical Digital Image Correlation (DIC) methods, the moment-curvature behavior of steel and GFRP bars reinforced concrete beams under flexure was explored in this study. In the tension zone, laboratory studies were carried out on steel-RC and GFRP-RC beams with varying percentages of longitudinal reinforcement ratios of 0.33 %, 0.52%, and 1.11%. The distinct mechanism of cracking initiation and fracture progression of failure in steel-RC and GFRP-RC beams were effectively correlated and picked up using AE waveform characteristics of the number of AE hits and their amplitudes, AE energy as well as average frequency and duration. AE XY event plots and longitudinal strain profiles using DIC gives an online and real-time visual display of progressive AE activity and strains respectively to efficaciously depict the crack evolution and their advancement in steel-RC and GFRP-RC beams. They display a close matching with the micro and macro-cracks visually observed in the actual beams at various stages of loading.

Fatigue Characteristics of High Strength Fire Resistance Steel for Frame Structure and Time-Frequency Analysis its Acoustic Emission Signal (고강도 구조용 내화강의 피로특성 및 음향방출신호의 시간-주파수 해석)

  • Kim, Hyun-Soo;Nam, Ki-Woo;Kang, Chang-Young
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.67-72
    • /
    • 2000
  • Demand for now nondestructive evaluation are growing to detect fatigue crack growth behavior to predict long term performance of materials and structure in aggressive environments especially when they are In non-visible area. Acoustic emission technique is well suited to these problems and has drawn a keen interests because of its dynamic detection ability, extreme sensitivity and location of growing defects. In this study, we analysed acoustic emission signals obtained in fatigue and tensile test of high strength fire resistance steel for frame structure with time-frequency analysis methods. The main frequency range is different in the noise and the fatigue crack propagation. It could be classified that it were also generated by composite fracture mechanics of cleavage, dimple, inclusion separation etc.

  • PDF

Effect of Peening on Low Temperature Fatigue Strength Behavior of STABILIZER BAR in Suspension Material (현가장치 STABILIZER BAR의 저온피로강도에 미치는 쇼트피닝의 영향)

  • Jung, Jae-Wook;Park, Keyoung-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.353-358
    • /
    • 2004
  • We got the following characteristics from fatigue crack growth test carried out in the environment of room temperature and low temperature at $25^{circ}C$, $-60^{circ}C$, $-80^{circ}C$, and $-100^{circ}C$ in the range of stress ratio of 0.3 by means of opening mode displacement. And there is a difference between shot peened specimen and unpeened specimen. The purpose of this study is to predict the behavior of fatigue crack propagation as one of fracture mechanics on the compressive residual stress. Fatigue crack growth rate of shot peened metal was lower than that of unpeened metal. The compressive residual stress made an impact on tension and compression of the plasticity deformation in fatigue crack plasticity zone. That is. the constrained force about plasticity deformation was strengthened by resultant stress, which resulted from plasticity deformation and compressive residual stress in the process of fatigue crack propagation.

  • PDF

Bending Collapse Characteristics of Hat Section Beam Filled with Structural Foam (폼 충진 모자단면 빔의 굽힘붕괴 특성)

  • Lee, Il-Seok;Kang, Sung-Jong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.92-99
    • /
    • 2006
  • Design capability for high safety vehicle with light weight is crucial to enhancing competitive power in vehicle market. The structural foam can contribute to restraining section distortion in body members undergoing bending collapse at vehicle crash. In this study, first, the validation of analysis model including structural foam model for simulating fracture behavior was discussed, and the bending collapse characteristics of five representative section types were analyzed and compared. Next, with changing the laminate foam shape, load carrying capability and absorbed energy were observed. The results suggests a design strategy of body members filled with laminate foam, leading to effectively elevating bending collapse characteristics with weight increase in the minimum.

Evaluation of Mechanical Properties of RPV Clad by Small Punch Tests

  • Lee, Joo-Suk;Kim, In-Sup
    • Nuclear Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.574-585
    • /
    • 2002
  • The microstructural characteristics and its related mechanical properties of RPV cladding have been investigated using small punch (SP) tests. SA508 Cl.3 RPV steel plates were overlay cladded with the type ER309L welding consumables by submerged arc welding process. Although the RPV clad material had a small portion of 5 ferrite phase, it still showed the ductile to brittle transition behavior The transition temperature was determined by the SP test and it depended on the content of $\sigma$ phase, specimen size, and determination methods. The fracture appearance of SP specimen was changed from circumferential to radial cracking as test temperature became low, and below the transition temperature region, ER309L cladding usually fractured along the 6 ferrite by the low temperature failure of ferrite phase.

Assessment of Fracture Characteristics of Natural Gas Pipeline Weldment According to the Change of Microstructures (천연가스 배관 용접부의 미세조직의 변화에 따른 파괴특성 평가)

  • Ju Jang-Bog;Lee Jung-Suk;Jang Jae-il;Kim Cheol-man;Kim Woo-sik;Kwon Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.3 s.15
    • /
    • pp.15-22
    • /
    • 2001
  • Reliability evaluation of welded structures by mechanical testing of weld heat-affected zones (HAZs) has become general practice throughout the world. HAZs of steel welded Joints show a gradient of microstructure from the fusion line to the unaffected base metal. This study is concerned a correlation between the microstructural change and the fracture characteristics in HAZs of both seam and girth welds of API 5L X65 pipeline steel, which is generally used for natural gas transmission pipelines in Korea. The focus in this study is the investigation of macroscopic fracture behavior of the various regions within HAZ. Changes in microstructure and toughness were observed using actual HAZ specimens. To evaluate the macroscopic toughness of actual HAZ, Charpy V-notch impact test and CTOD test were performed.

  • PDF

Dynamic Characteristics of Lumbar Spine After Vertebroplasty (척추성형술 시술 후 요추의 동적 특성)

  • Kim S.H.;Ko S.K.;Chae S.W.;Park J.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.240-243
    • /
    • 2005
  • Osteoporosis, one of the age-related disease causes vertebra body fracture due to weakening trabecular bone and makes a substantial effect on load sharing among vertebras. Recently, vertebroplasty is one of the most popular treatment, as augmenting PMMA into vertebra. Biomechanical studies about vertebroplasty have been evaluated by several experiments or analysis under static loading but there has been no study on response under dynamic loading. This study included the FE analysis of patients who treated vertebroplasty under dynamic loading. For this study, 3-D FE model of lumbar spine(L1-L2) was modeled from CT scanning data and compared with experimental results in vitro in order to validate this model. Biomechanical behavior about each of normal person, osteoporotic patient and patient treated vertebroplasty for quantitative evaluations of vertebroplasty was compared and investigated.

  • PDF

Hydrogen Embrittlement Characteristics by Slow Strain Rate Test of Aluminum Alloy for Hydrogen Valve of Hydrogen Fuel Cell Vehicle (수소연료전지 자동차의 수소밸브용 알루미늄 합금의 저변형율인장실험에 의한 수소취화특성 연구)

  • Hyun-Kyu, Hwang;Dong-Ho, Shin;Seong-Jong, Kim
    • Corrosion Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.503-513
    • /
    • 2022
  • As part of eco-friendly policies, interest in hydrogen vehicles is growing in the automotive industry to reduce carbon emissions. In particular, it is necessary to investigate the application of aluminum alloy for light weight hydrogen valves among hydrogen supply systems to improve the fuel efficiency of hydrogen vehicles. In this research, we investigated mechanical characteristics of aluminum alloys after hydrogen embrittlement considering the operating environment of hydrogen valves. In this investigation, experiments were conducted with strain rate, applied voltage, and hydrogen embrittlement time as variables that could affect hydrogen embrittlement. As a result, a brittle behavior was depicted when the strain rate was increased. A strain rate of 0.05 mm/min was selected for hydrogen embrittlement research because it had the greatest effect on fracture time. In addition, when the applied voltage and hydrogen embrittlement time were 5 V and 96 hours, respectively, mechanical characteristics presented dramatic decreases due to hydrogen embrittlement.

Hydro-mechanical coupling behaviors in the failure process of pre-cracked sandstone

  • Li, Tingchun;Du, Yiteng;Zhu, Qingwen;Ren, Yande;Zhang, Hao;Ran, Jinlin
    • Geomechanics and Engineering
    • /
    • v.24 no.6
    • /
    • pp.573-588
    • /
    • 2021
  • The interaction of cracks and water significantly affects the fracture mechanism of rocks. In this study, laboratory tests were conducted using sandstone samples containing a single fissure to explore the hydro-mechanical behaviors in the failure process of pre-cracked rocks. The internal crack characteristics were also analyzed using X-ray CT scanning. The results show that the confining pressure has the greatest effect on the mechanical properties (e.g., strengths, elastic modulus, and Poisson's ratio), followed by the fissure inclination and water pressure. At a lower fissure inclination, the confining pressure may control the type main cracks that form, and an increase in the water pressure increases the number of anti-wing cracks and the length of wing cracks and branch cracks. However, the fracture behaviors of samples with a higher fissure inclination are only slightly affected by the confining pressures and water pressures. The effect of fissure inclination on the internal crack area is reduced with the propagation from the fissure tips to the sample ends. The fissure inclination mainly affects the value of permeability but not affect the trend. The impact of pre-existing fissure on permeability is smaller than that of confining pressure and water pressure.