DOI QR코드

DOI QR Code

Analysis of quasi-brittle materials at mesoscopic level using homogenization model

  • Borges, Dannilo C (Federal University of Goias, Civil Engineering School, Av. Universitaria) ;
  • Pituba, Jose J C (Federal University of Goias, Engineering School, Department of Civil Engineering, Laboratory of Computational Modeling)
  • Received : 2017.02.26
  • Accepted : 2017.05.23
  • Published : 2017.06.25

Abstract

The modeling of the mechanical behavior of quasi-brittle materials is still a challenge task, mainly in failure processes when fracture and plasticity phenomena become important actors in dissipative processes which occur in materials like concrete, as instance. Many homogenization-based approaches have been proposed to deal with heterogeneous materials in the last years. In this context, a computational homogenization modeling for concrete is presented in this work using the concept of Representative Volume Element (RVE). The material is considered as a three-phase material consisting of interface zone (ITZ), matrix and inclusions-each constituent modeled by an independent constitutive model. The Representative Volume Element (RVE) consists of inclusions idealized as circular shapes symmetrically and nonsymmetrically placed into the specimen. The interface zone is modeled by means of cohesive contact finite elements. The inclusion is modeled as linear elastic and matrix region is considered as elastoplastic material. A set of examples is presented in order to show the potentialities and limitations of the proposed modeling. The consideration of the fracture processes in the ITZ is fundamental to capture complex macroscopic characteristics of the material using simple constitutive models at mesoscopic level.

Keywords

References

  1. Assaad, J.J., Harb, J. and Maaluf, Y. (2014), "Measurement of yield stress of cement pastes using the direct shear test", J. Non-Newton. Flu. Mech., 214, 18-27. https://doi.org/10.1016/j.jnnfm.2014.10.009
  2. Brancherie, D. and Ibrahimbegovic, A. (2009), "Novel anisotrtopic continuum-discrete damage model capable of representing localized failure of massive structures. Part I: Theoretical formulation and numerical implementation", Eng. Comput., 26(1/2), 100-127. https://doi.org/10.1108/02644400910924825
  3. Cirak, F., Ortiz, M. and Pandolfi, A. (2005), "A cohesive approach to thin-shell fracture and fragmentation", Comput. Meth. Appl. Mech. Eng., 194(21), 2604-2618. https://doi.org/10.1016/j.cma.2004.07.048
  4. Fernandes, G.R., Pituba J.J.C. and Souza Neto, E.A. (2015a), "Multi-scale modelling for bending analysis of heteregeneous plates by coupling BEM and FEM", Eng. Anal. Bound. Elem., 51, 1-13. https://doi.org/10.1016/j.enganabound.2014.10.005
  5. Fernandes, G.R., Pituba J.J.C. and Souza Neto, E.A. (2015b), "FEM/BEM formulation for multi-scale analysis of stretched plates", Eng. Anal. Bound. Elem., 54, 47-59. https://doi.org/10.1016/j.enganabound.2015.01.005
  6. Gitman, I.M. (2006), "Representative volumes and multi-scale modeling of quasi-brittle materials", Ph.D. Dissertation, Technische Universiteit Delft, The Netherlands.
  7. Giusti, S.M., Blanco, P.J., Souza Neto, E.A. and Feijoo, R.A. (2009), "An assessment of the gurson yield criterion by a computational multi-scale approach", Eng. Comput., 26(3), 281-301. https://doi.org/10.1108/02644400910943626
  8. Kim, S.M., Al-Rub, R.K.A. (2011), "Meso-scale computational modeling of the plastic-damage response of cementitious composites", Cement Concrete Res., 41(3), 339-358. https://doi.org/10.1016/j.cemconres.2010.12.002
  9. Lopez, C.M., Carol, I. and Aguado, A. (2008), "Meso-structural study of concrete fracture using interface elements. I: Numerical model and tensile behavior", Mater. Struct., 41(3), 583-599. https://doi.org/10.1617/s11527-007-9314-1
  10. Mehta, P.K. and Monteiro, P.J.M. (2008), Concreto: Estrutura, Propriedades E Materiais, 1st Edition, PINI, Sao Paulo, Brazil.
  11. Miehe, C. (2003), "Computational micro-to-macro transitions for discretized micro-structures of heterogeneous materials at finite strains based on the minimization of averaged incremental energy", Comput. Meth. Appl. Mech. Eng., 192(5), 559-591. https://doi.org/10.1016/S0045-7825(02)00564-9
  12. Miehe, C. and Koch, A. (2002), "Computational micro-to-macro transitions of discretized microstructures undergoing small strains", Arch. Appl. Mech., 72(4), 300-317. https://doi.org/10.1007/s00419-002-0212-2
  13. Needleman, A. and Tvergaard, V. (1987), "An analysis of ductile rupture modes at a crack tip", J. Mech. Phys. Sol., 35(2), 151-183. https://doi.org/10.1016/0022-5096(87)90034-2
  14. Nguyen, V.P., Lloberas Valls, O., Stroeven, M. and Sluys, L.J. (2010), "On the existence of representative volumes for softening quasi-brittle materials-a failure zone averaging scheme", Comput. Meth. Appl. Mech. Eng., 199(45), 3026-3036.
  15. Oliver, J., Caicedo, M., Roubin, E., Hernadez, J.A. and Huespe, A. (2014), Multi-Scale ($FE^{2}$) Analysis of Materials Failure in Cement/Aggregate-Type Composite Structure, In: EURO-C, 2004, St. Anton am Alberg, XX. Anais. Computational Modelling of Concrete Structure, Londres: CRC PRESS, 1, 39-49.
  16. Ortiz, M. and Pandolfi, A. (1999), "Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis", J. Numer. Meth. Eng., 44, 1267-1282. https://doi.org/10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7
  17. Pereira Jr, W.M., Araujo, D.L. and Pituba, J.J.C. (2016), "Numerical analysis of steel-fiber-reinforced concrete beams using damage mechanics", Ibrac. Struct. Mater. J., 9(2), 153-191.
  18. Peric, D., Souza Neto, E.A., Feijoo, R.A., Partovi, M. and Carneiro Molina, A.J. (2011), "On micro-tomacro transitions for multiscale analysis of heterogeneous materials: Unified variational basis and finite element implementation", J. Numer. Meth. Eng., 87(1-5), 149-170. https://doi.org/10.1002/nme.3014
  19. Pituba, J.J.C. (2015), "A damage model formulation: Unilateral effect and RC structures analysis", Comput. Concrete, 15(5), 709-733. https://doi.org/10.12989/cac.2015.15.5.709
  20. Pituba, J.J.C. and Fernandes, G.R. (2011), "An anisotropic damage for the concrete", J. Eng. Mech., 137, 610-624. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000260
  21. Pituba, J.J.C. and Souza Neto, E.A. (2015), "Modeling of unilateral effect in brittle materials by a mesoscopic scale approach", Comput. Concrete, 15(5), 1-25. https://doi.org/10.12989/cac.2015.15.1.001
  22. Pituba, J.J.C., Fernandes, G.R. and Souza Neto, E.A. (2016), "Modelling of cohesive fracture and plasticity processes in composite microstructures", J. Eng. Mech., 142(10), 04016069-1-04016069-15. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001123
  23. Rodrigues, E.A., Manzoli, O.L., Bitencourt Jr, L.A.G. and Bittencourt, T.N. (2016), "2D mesoscale model for concrete based on the use of interface element with a high aspect ratio", J. Sol. Struct., 94-95, 112-124. https://doi.org/10.1016/j.ijsolstr.2016.05.004
  24. Sanchez, P.J., Blanco, P.J., Huespe, A.E. and Feijoo, R.A. (2013), "Failure-oriented multi-scale variational formulation: Micro-structures with nucleation and evolution of softening bands", Comput. Meth. Appl. Mech. Eng., 257, 221-247. https://doi.org/10.1016/j.cma.2012.11.016
  25. Santos, W.F. and Pituba, J.J.C. (2017), "Yield surfaces of material composed of porous and heterogeneous microstructures considering phase debonding", Lat. Am. J. Sol. Struct., 14(7), 1387-1415. https://doi.org/10.1590/1679-78253776
  26. Santos, W.F., Fernandes, G.R. and Pituba, J.J.C. (2016), "Analysis of the influence of plasticity and fracture processes on the mechanical behavior of metal matrix composites microstructures", Materia, 21(3), 577-598.
  27. Toro, S., Sanchez, P.J. Blanco, P.J., Souza Neto, E.A., Huespe, A.E. and Feijoo, R.A. (2016), "Multiscale formulation for material failure accounting for cohesive cracks at the macro and micro scales", J. Plast., 76, 75-110. https://doi.org/10.1016/j.ijplas.2015.07.001
  28. Wriggers, P. and Moftah, S.O. (2006), "Mesoscale models for concrete: homogenization and damage behavior", Fin. Elem. Anal. Des., 42(7), 623-636. https://doi.org/10.1016/j.finel.2005.11.008
  29. Zhu, Q., Kondo, D., Shao, J. and Pensee, V. (2008), "Micromechanical modelling of anisotropic damage in brittle rocks and application", J. Rock Mech. Min., 45(4), 467-477. https://doi.org/10.1016/j.ijrmms.2007.07.014

Cited by

  1. Análise em multi-escala do problema bidimensional de placas submetidas ao cisalhamento e considerando descolamento de fases vol.25, pp.3, 2017, https://doi.org/10.1590/s1517-707620200003.1081
  2. Modeling Particles Elements in Damaged Reinforced Concrete Structures vol.18, pp.1, 2017, https://doi.org/10.1590/1679-78256251
  3. Computational homogenisation approach applied to improve mechanical properties of heterogeneous materials vol.40, pp.6, 2017, https://doi.org/10.1007/s40314-021-01580-w