DOI QR코드

DOI QR Code

Hydrogen Embrittlement Characteristics by Slow Strain Rate Test of Aluminum Alloy for Hydrogen Valve of Hydrogen Fuel Cell Vehicle

수소연료전지 자동차의 수소밸브용 알루미늄 합금의 저변형율인장실험에 의한 수소취화특성 연구

  • Hyun-Kyu, Hwang (Graduate school, Mokpo national maritime university) ;
  • Dong-Ho, Shin (Graduate school, Mokpo national maritime university) ;
  • Seong-Jong, Kim (Division of marine engineering, Mokpo national maritime university)
  • 황현규 (목포해양대학교대학원) ;
  • 신동호 (목포해양대학교대학원) ;
  • 김성종 (목포해양대학교기관시스템공학부)
  • Received : 2022.12.09
  • Accepted : 2022.12.21
  • Published : 2022.12.30

Abstract

As part of eco-friendly policies, interest in hydrogen vehicles is growing in the automotive industry to reduce carbon emissions. In particular, it is necessary to investigate the application of aluminum alloy for light weight hydrogen valves among hydrogen supply systems to improve the fuel efficiency of hydrogen vehicles. In this research, we investigated mechanical characteristics of aluminum alloys after hydrogen embrittlement considering the operating environment of hydrogen valves. In this investigation, experiments were conducted with strain rate, applied voltage, and hydrogen embrittlement time as variables that could affect hydrogen embrittlement. As a result, a brittle behavior was depicted when the strain rate was increased. A strain rate of 0.05 mm/min was selected for hydrogen embrittlement research because it had the greatest effect on fracture time. In addition, when the applied voltage and hydrogen embrittlement time were 5 V and 96 hours, respectively, mechanical characteristics presented dramatic decreases due to hydrogen embrittlement.

Keywords

Acknowledgement

이 논문은 산업자원통상부 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구임(수소전기차용 고기밀 경량화 일체형 수소 밸브 모듈 개발).

References

  1. York, R. Do alternative energy sources displace fossil fuels?, Nature Clim Change, 2, 441 (2012). Doi: https://doi.org/10.1038/nclimate1451
  2. S. Sharma, S. Agarwal, A. Jain, Significance of Hydrogen as Economic and Environmentally Friendly Fuel, Energies, 14, 7389 (2021). Doi: https://doi.org/10.3390/en14217389
  3. I. Staffel, D. Scamman, A. V. Abad, P. Balcombe, P. E. Dodds, P. Ekins, N. Shah and K. R. Ward, The role of hydrogen and fuel cells in the global energy system, Energy & Environmental Science, 12, 463 (2019). Doi: https://doi.org/10.1039/C8EE01157E
  4. S. K. Dash, S. Chakraborty, M. Roccotelli and U.K. Sahu, Hydrogen Fuel for Future Mobility: Challenges and Future Aspects, Sustainability, 14, 8285 (2022). https://doi.org/10.3390/su14148285
  5. Y. Wu and H. Gao, Optimization of Fuel Cell and Supercapacitor for Fuel-Cell Electric Vehicles, IEEE Transactions on Vehicular Technology, 55, 1748, (2006). Doi: https://doi.org/10.1109/TVT.2006.883764
  6. E. Pouillier, A. F. Gourgues, D. Tanguy and E. P. Busso, A study of intergranular fracture in an aluminium alloy due to hydrogen embrittlement, International Journal of Plasticity, 34, 139 (2012). Doi: https://doi.org/10.1016/j.ijplas.2012.01.004
  7. M. Safyari, M. Moshtaghi, S. Kuramoto, On the role of traps in the microstructural control of environmental hydrogen embrittlement of a 7xxx series aluminum alloy, Journal of Alloys and Compounds, 855, 1 (2021). Doi: https://doi.org/10.1016/j.jallcom.2020.157300
  8. S. Charca, O. Uwakweh, V. Agarwala, Hydrogen Transport Conditions and Effects in Cathodically Polarized AF1410 Steel, Metallurgical and Materials Transactions A, 38, 389 (2007). Doi: https://doi.org/10.1007/s11661-007-9241-3
  9. T. Ohnishi and T. Ito, Effects of Cathodic Hydrogen Charging on the Mechanical Properties of an Al-Li-Cu-Mg-Zr Alloy, Transactions of the Japan Institute of Metals, 29, 642 (1988). Doi: https://doi.org/10.2320/matertrans1960.29.642
  10. M. Hershkovitz, I.A. Blech and Y. Komem, Stress relaxation in thin aluminium films, Thin Solid Films, 130, 87-93 (1985). Doi: https://doi.org/10.1016/0040-6090(85)90298-6
  11. I. Chasiotis and W.G. Knauss, A new microtensile tester for the study of MEMS materials with the aid of atomic force microscopy, Experimental Mechanics, 42, 51 (2002). Doi: https://doi.org/10.1007/BF02411051
  12. K. H. So, J. S. Kim, Y. S. Chun, K.T. Park, Y. K. Lee and C. S. Lee, Hydrogen Delayed Fracture Properties and Internal Hydrogen Behavior of a Fe-18Mn-1.5Al-0.6C TWIP Steel, ISIJ International, 49, 1952 (2009). Doi: https://doi.org/10.2355/isijinternational.49.1952
  13. W. M. Mook, J. D. Nowak, C. R. Perrey, C.B. Carter, R. Mukherjee, S.L. Girshick, P.H. McMurry and W.W. Gerberich, Compressive stress effect on nanoparticle modulus and fracture, Physical Review, 75, 898 (2007). Doi: https://doi.org/10.1103/PhysRevB.75.214112
  14. W. Gerberich, J. Michler, W. Mook, R. Ghisleni, F. Ostlund, D. Stauffer and R. Ballarini, Scale effects for strength, ductility, and toughness in "brittle" materials, Journal of Materials Research, 24, 898 (2009). Doi: https://doi.org/10.1557/jmr.2009.0143
  15. X. Li, J. Zhang, Y. Wang, B. Li, P. Zhang and X. Song, Effect of cathodic hydrogen-charging current density on mechanical properties of prestrained high strength steels, Materials Science and Engineering A, 641, 45 (2015). Doi: https://doi.org/10.1016/j.msea.2015.06.003
  16. S. J. Lee, M. S Han, S. K. Jang and S.J. Kim, Effect of Flow Velocity on Corrosion Rate and Corrosion Protection Current of Marine Material, Corrosion Science and Technology, 14, 226 (2015). Doi: http://dx.doi.org/10.14773/cst.2015.14.5.226
  17. M. d. J. Galvez-Vazquez, V. Grozovski, N. Kovacs, P. Broekmann and S. Vesztergom, Full Model for the TwoStep Polarization Curves of Hydrogen Evolution, Measured on RDEs in Dilute Acid Solutions, The Journal of Physical Chemistry C, 124, 3988 (2020). Doi: https://doi.org/10.1021/acs.jpcc.9b11337
  18. J. S Kim, Effects of Heat Treatment on Stress Corrosion Cracking and Hydrogen Embrittlement of Al Alloy for ship, A thesis of doctorate, Mokpo maritime university, p. 47 (2010).
  19. T. Tsutsumi, T. Watakabe and G. Itoh, Behavior of Hydrogen in Electrolytically Charged Aluminum, Advanced Materials Research, 409, 84, (2011). Doi: https://doi.org/10.4028/www.scientific.net/AMR.409.84
  20. Z. Zhang, X. Zhou, H. Zhang, J. Guo and Hua Ning, Hydrogen penetration and diffusion on Mg17Al12 (110) surface: A density functional theory investigation, International Journal of Hydrogen Energy, 42, 26013 (2017). Doi: https://doi.org/10.1016/j.ijhydene.2017.08.176
  21. S. M. Charca, O. N. Uwakweh, B. Shafiq, et al., Characterization of Hydrogen Permeation in Armco-Fe during Cathodic Polarization in Aqueous Electrolytic Media, Journal of Materials Engineering and Performance, 17, 127 (2008). Doi: https://doi.org/10.1007/s11665-007-9114-3
  22. V.M. Polyanskii, Role of hydrogen embrittlement in the corrosion cracking of aluminum alloys, Material Science, 21, 301 (1986). Doi: https://doi.org/10.1007/BF00726550
  23. Y. Mine, Fatigue crack growth behavior and hydrogen penetration properties in austenitic stainless steels exposed to high-pressure hydrogen gas environment, Tetsu-To-Hagane, 93, 47 (2007). Doi: https://doi.org/10.1299/kikaia.74.1016
  24. S. J. Kim, Theoretical Considerations of Numerical Model for Hydrogen Diffusion Behavior of High-Strength Steel Under Combined Action of Tensile Stress and H2S Corrosion, Corrosion Science and Technology, 18, 102 (2019). Doi: https://doi.org/10.14773/CST.2019.18.3.102
  25. J. Song and W. Curtin, Atomic mechanism and prediction of hydrogen embrittlement in iron, Nature Mater, 12, 145 (2013). Doi: https://doi.org/10.1038/nmat3479
  26. J. H. Huang, C. J. Altstetter, Internal hydrogen-induced subcritical crack growth in austenitic stainless steels, Metallurgical and Materials Transaction A, 22, 2605 (1991). Doi: https://doi.org/10.1007/BF02851354
  27. S. J. Kim, and K. Y. Kim, An Overview on Hydrogen Uptake, Diffusion and Transport Behavior of Ferritic Steel, and Its Susceptibility to Hydrogen Degradation, Corrosion Science and Technology, 16, 209 (2017). Doi: https://doi.org/10.14773/cst.2017.16.4.209
  28. S. K. Dwivedi and M. Vishwakarma, Hydrogen embrittlement in different materials: A review, International Journal of Hydrogen Energy, 43, 21603 (2018). Doi: https://doi.org/10.1016/j.ijhydene.2018.09.201
  29. Yingjie Yan, Yu Yan, Yang He, Jinxu Li, Yanjing Su, Lijie Qiao, Hydrogen-induced cracking mechanism of precipitation strengthened austenitic stainless steel weldment, International Journal of Hydrogen Energy, 40, 2404 (2015). Doi: https://doi.org/10.1016/j.ijhydene.2014.12.020