• Title/Summary/Keyword: mechanical analysis

Search Result 21,890, Processing Time 0.043 seconds

Dynamic Characteristic Analysis of Electro-Mechanical Coupled System Considering a Temperature (온도를 고려한 전기-기계 결합 시스템의 운동 특성 해석)

  • Choi, Yoon-Seok;Kwak, Dae-Yong;Sung, Tan-Il;Kim, Young-Sun;Park, Il-Han
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.870-871
    • /
    • 2007
  • As the system with current is heat generation system, it has to be analyzed to consider effect in virtue of temperature. Hence this paper examined the solution of the coupled thermalelectro-mechanical problem. Mechanical modeling, force computation, electromagnetic field solution, and heat transfer modeling are addressed. It accomplished electro-mechanical coupled system analysis considering a temperature, the analysis method is by using extracted circuit parameters with resistivity by heat transfer analysis and inductance by electromagnetic analysis.

  • PDF

Short Circuit Electromagnetic Force Prediction by Coupled Electromagnetic-Mechanical Field Analysis of Dry-Type Transformer (전자계-기계계 결합해석에 의한 건식변압기의 단락강도 예측)

  • Ahn, Hyun-Mo;Hahn, Sung-Chin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.301-308
    • /
    • 2011
  • This paper deals with the coupled electromagnetic-mechanical field analysis for short-circuit electromagnetic force of the dry-type transformer. The short-circuit currents are calculated using external circuit in accordance with short-circuit test equipment. According to short-circuit current, the generated magnetic leakage flux density in dry-type transformer model is calculated by finite element method. The radially-directed electromagnetic forces in windings are calculated using electromagnetic field analysis and then axially-directed electromagnetic forces in windings are calculated using electromagnetic-mechanical field analysis. The calculated axially-directed electromagnetic forces in high voltage winding are compared to those of measured ones and showed good agreement with experimental results.

Study on tolerance and reliability analysis of mechanical systems with uncertainty (불확정성을 고려한 기계 시스템의 공차해석 및 신뢰도 해석에 관한 연구)

  • Choe, Jin-Ho;Lee, Se-Jeong;Choe, Dong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.215-226
    • /
    • 1998
  • This paper addresses an analytical approach to tolerance and reliability analysis of mechanical systems with uncertainty. Many mechanical systems consist of links and lubricated joints. The mobility method is applied to consider lubrication effects and the clearance vector model is used to stochastically define a mechanism for tolerance and reliability analysis. To show the validity of the proposed method, a four-bar path generator and a slider-crank mechanism are considered. The results obtained by applying the proposed method are compared with those by Monte-Carlo simulation.

Coin Drop Simulation based on Smoothed Particles Hydrodynamics

  • Kang, Han-bin;Pack, In-seok;Song, Ju-han;Lee, Dong-ug;Park, Min-hyeok;Lee, Seok-soon
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.1
    • /
    • pp.19-25
    • /
    • 2013
  • Smoothed Particle Hydrodynamics(SPH) method uses a grid of historical analysis and is not Lagrangian particles using the grid method. The Navier-Stokes equations were used to solve the viscous flow of the non-compressed. In this study, the numerical analysis of the three-dimensional Coin Drop Simulation using SPH method was performed, and the analysis results are compared with experimental results, and a similar behavior can be seen. The commercial program used was Abaqus/Explicit. SPH method to reduce the error by comparing the existing flow analysis or interpretation of the continuing research is needed in the future. That will enable real-time analysis of material obtained as a result of these numerical simulations similar to the actual flow phenomena, depending on the development of computer graphics technology to show visually. As a result, this method can be applied to the analysis fluid - structure interaction problems in a variety of fields.

A study on the structural analysis of CNC multiple router system (CNC 복합 라우터 시스템의 구조해석에 관한 연구)

  • Yang, Bu-Yeol;Kim, Seong-Hyun;Choi, Seung-Gun;Choi, Ung-Geol;Jang, Young-Ju;Yoon, Tae-Hyun;Baek, Seung-Yub
    • Design & Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.14-18
    • /
    • 2015
  • Although demand for non-metalic materials, acrylic and metal plate material is increased. The complex processing equipment that can machine it at the same time is extremely limited. In case of existing manual multiple routers, it is no substantial demand due to the difficulty in use and low efficiency. In this study, the CNC multiple router was designed. The structural analysis was carried out according to the structure of the bed as a basic step for the development of multiple CNC router system that can guarantee the increase in yield while optimizing the manufacturing process. CNC router added a dummy was carried out about weight analysis and load analysis. Development of a CNC router system will be progressed on the basis of the analysis result.

  • PDF

Injury Assessment and Analysis under Blast Load Using MADYMO (MADYMO를 이용한 폭발 하중에 따른 인체 상해평가 및 분석)

  • Choi, Ho-Min;Kim, Jae-Ki;Pack, In-Seok;Lee, In-Young;Kwon, Dae-Ryeong;Lee, Seok-Soon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.24-29
    • /
    • 2017
  • There is a need for explosion experiments for explosion-related research. However, there are many restrictions in performing an actual experiment. Therefore, in this paper, an alternative method of overcoming the constraints of an explosion experiment has been conducted using a passenger behavior analysis program called MADYMO to assess and analyze the human body injury due to explosion load. To increase the reliability of the analysis, a drop test has been conducted with the analysis. We provide a new framework for performing the analysis. In future, we will further develop our research with the goal of reducing the opportunity cost for the study of the human body injury.

Optimal Design of an IPMSM for High-Speed Operation Using Electromagnetic and Stress Analysis

  • Seo, Jang-Ho;Jung, Hyun-Kyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.377-381
    • /
    • 2009
  • In the development of an interior permanent magnet synchronous machine (IPMSM) for high-speed operation, the problem of mechanical stress of the rotor by centrifugal force becomes more essential as the speed and size of the machines increase. In this paper, the optimal design process combined with mechanical stress analysis was presented. In the analysis of mechanical stress, the node and element data obtained by the electromagnetic field analysis program are also used in the stress analysis. Therefore, the different pre-processing for the stress analysis program is no longer required. Therefore, the computing time of the new method is very short compared with the conventional approach, and when repeated analyzes of various models are required, this method is very useful. The validity of our methods was verified by comparing simulation results with conventional and experimental data.

Study on Multibody Dynamic Analysis and Durability of Heavy Load Bucket Roller Chain System (고하중용 버킷 롤러체인 시스템의 다물체 동역학 해석 및 내구성 연구)

  • Kim, Chang Uk;Park, Jin Chul;Lee, Dong Woo;Song, Jung Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.11
    • /
    • pp.919-925
    • /
    • 2016
  • In this study, multibody dynamic and mechanical analyses were conducted for the structure of roller chain bucket elevator system. The fatigue life of the roller chain elevator system was determined under static and fatigue loadings. Results of multibody dynamic analysis suggested that the maximum contact force occurred at the drive sprocket engagement point with the roller chain due to maximum tension. Fatigue analysis results suggest that the high load roller chain system is durable and safe because its life time is more than 700,000 cycles, close to its designed value (1,000,000 cycle). However, the contact portion of plate and pin needed a safety factor. The dynamic analysis of the heavy load roller chain was conducted with a multibody dynamic analysis program. The results obtained in this study can be utilized for dynamic analysis of roller chain systems in all industries.

An Approximate Method for the Buckling Analysis of a Composite Lattice Rectangular Plate

  • Kim, Yongha;Kim, Pyunghwa;Kim, Hiyeop;Park, Jungsun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.450-466
    • /
    • 2017
  • This paper defines the modified effective membrane stiffness, bending stiffness considering the directionally dependent mechanical properties and mode shape function of a composite lattice rectangular plate, which is assumed to be a Kirchhoff-Love plate. It subsequently presents an approximate method of conducting a buckling analysis of the composite lattice rectangular plate with various boundary conditions under uniform compression using the Ritz method. This method considers the coupled buckling mode as well as the global and local buckling modes. The validity of the present method is verified by comparing the results of the finite element analysis. In addition, this paper performs a parametric analysis to investigate the effects of the design parameters on the critical load and buckling mode shape of the composite lattice rectangular plate based on the present method. The results allow a database to be obtained on the buckling characteristics of composite lattice rectangular plates. Consequently, it is concluded that the present method which facilitates the calculation of the critical load and buckling mode shape according to the design parameters as well as the parametric analysis are very useful not only because of their structural design but also because of the buckling analysis of composite lattice structures.

Suggestions for Revision of Mathematics Curriculum by Analysis of Current Mechanical Engineering Mathematics (기계공학수학의 현황 분석을 통한 개편안 제시)

  • Kang, Ju Seok;Park, Chan Il
    • Journal of Engineering Education Research
    • /
    • v.20 no.2
    • /
    • pp.50-56
    • /
    • 2017
  • Because all areas of mechanical engineering involves the use of mathematics, mechanical engineers need mathematical understanding and skill enhancement. To achieve the effective mathematics education for mechanical undergraduate students, it should reorganize the important subtopics of mathematics. In this paper, we explore the direction of the development of mathematics education for mechanical engineers by analyzing the teaching hours of each topics in the mathematics and by comparing the results with significance analysis of expert survey. To do so, syllabuses of mathematics courses of the selected mechanical engineering departments were analyzed and the survey responses of professionals in the Korean Society of Mechanical Engineers were also investigated. Finally, the revision of mathematics curriculum in the mechanical engineering was proposed.