• Title/Summary/Keyword: mechanical analysis

Search Result 22,022, Processing Time 0.056 seconds

Electro-thermal analysis of contacts and connections in VCB under high electric current by finite element methods (유한요소법에 의한 VCB 접속부의 대전류에 대한 전열해석)

  • Kang, Woo-Jong;Huh, Hoon;Kang, Kyeong-Rok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.4
    • /
    • pp.715-722
    • /
    • 1998
  • A large electric system of a vacuum circuit breaker(VCB) has been studied for the electro-thermal analysis by finite element methods. Since the heat generation in VCB causes not only energy loss but deterioration of the VCB system with oxidization of parts, the overheating of the system must be prevented. For the analysis, a finite element formulation is derived for both electric analysis and thermal analysis that are coupled together. Two sets of formulations are uncoupled after finite dimensional approximation. First, the electric potential is obtained for the entire field and scaled to the given electric current. The electric field obtained is then used to calculate the heat generation in the VCB system including contacts and connections for the calculation of the temperature distribution in the entire domain. The finite element analysis is carried out to study the effect of shapes and locations of contacts and connections. From the results, the existing VCB has been modified to enhance its capacity with reduction of heat generation and temperature elevation.

Analysis of multi leaf spring based on contact mechanics - a novel approach

  • Kumaravelan, R.;Ramesh, S.;Gandhi, V.C. Sathish;Agu, M. Joemax;Thanmanaselvi, M.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.3
    • /
    • pp.443-454
    • /
    • 2013
  • A leaf spring, especially the longitudinal type is liable and persistent element in automotive suspension system. In the present scenario the composite materials are widely used in the automobile industries has shown a great interest in the replacement of steel spring due to high strength by weight ratio. Previous investigations focused on stresses and displacement analysis of single leaf spring for different materials. The present work aims to design and analysis of leaf spring for two different cases by considering the Young's modulus to yield strength ratio. In the first case the analysis deals with the design and analysis of a single cantilever solid triangle beam which is an equivalent beam of a spring with three leaves having uniform strength. In the second case a 3-beams of rectangular cross section has been considered which is equivalent to a spring with three leaves. The analysis was carried out based on contact mechanics approach. The results were compared, that the fiberglass composite leaf spring is suitable for high loading capacity, reliability and efficiency.

DEVELOPMENT OF AN IMPROVED THREE-DIMENSIONAL STATIC AND DYNAMIC STRUCTURAL ANALYSIS BASED ON FETI-LOCAL METHOD WITH PENALTY TERM

  • KIM, SEIL;JOO, HYUNSHIG;CHO, HAESEONG;SHIN, SANGJOON
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.21 no.3
    • /
    • pp.125-142
    • /
    • 2017
  • In this paper, development of the three-dimensional structural analysis is performed by applying FETI-local method. In the FETI-local method, the penalty term is added as a preconditioner. The OPT-DKT shell element is used in the present structural analysis. Newmark-${\beta}$ method is employed to conduct the dynamic analysis. The three-dimensional FETI-local static structural analysis is conducted. The contour and the displacement of the results are compared following the different number of sub-domains. The computational time and memory usage are compared with respect to the number of CPUs used. The three-dimensional dynamic structural analysis is conducted while applying FETI-local method. The present results show appropriate scalability in terms of the computational time and memory usage. It is expected to improve the computational efficiency by combining the advantages of the original FETI method, i.e., FETI-mixed using the mixed local-global Lagrange multiplier.

Structural Analysis on the Arm and Floater Structure of a Wave Energy Converter

  • Chen, Zhenmu;Singh, Patrick Mark;Choi, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.3
    • /
    • pp.5-11
    • /
    • 2015
  • Ocean waves have huge amounts of energy, even larger than wind or solar, which can be extracted by some mechanical device. This can be done by creating a system of reacting forces, in which two or more bodies move relative to each other, while at least one body interacts with the waves. This moves the floater up and down. The floaters are connected to an arm structure, which are mounted on a fixed hull structure. Hence, the structure of the floater is very important. A static structural analysis with FSI (Fluid-Structure Interaction) analysis is conducted. To achieve the pressure load for the FSI analysis, the floater is simulated on a wave generator using rigid body motion. The structural analysis is done to examine the stresses on the whole system, and four types of flange and floater are optimized. The result shows that the structure of floater with wood support is the safest.

Stress Analysis and Residual Life Assessment of T-piece of High Temperature Pipe (고온배관 T-부의 응력해석 및 잔여수명평가)

  • Kwon, Yang-Mi;Ma, Young-Wha;Cho, Seong-Wook;Yoon, Kee-Bong
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.34-41
    • /
    • 2005
  • For assessing residual lift of the steam pipe in fossil power plants, inspections and analysis are usually focused on the critical locations such as butt welds, elbows, Y-piece and T-piece of the steam pipes. In predicting the residual life of T-piece, determination of local stress near welds considering system load as well as internal pressure is not a simple problem. In this study, stress analysis of a T-piece pipe was conducted using a three-dimensional model which represents the T-piece of a domestic fossil power station. Elastic and elastic-creep analysis showed the maximum stress level and its location. Residual creep rupture life was also calculated using the stress analysis results. It was argued that the calculated life is reasonably same as the measured one. The stress analysis results also support life prediction methodology based on in-field replication technique.

Fracture mechanics analysis of multipurpose canister for spent nuclear fuels under horizontal/oblique drop accidents

  • Jae-Yoon Jeong;Cheol-Ho Kim;Hune-Tae Kim;Ji-Hye Kim;Yun-Jae Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4647-4658
    • /
    • 2023
  • In this paper, elastic-plastic fracture mechanics analysis is performed to determine the critical crack sizes of the multipurpose canister (MPC) manufactured using austenitic stainless steel under dynamic loading conditions that simulate drop accidents. Firstly, dynamic finite element (FE) analysis is performed using Abaqus v.2018 with the KORAD (Korea Radioactive Waste Agency)-21 model under two drop accident conditions. Through the FE analysis, critical locations and through-thickness stress distributions in the MPC are identified, where the maximum plastic strain occurs during impact loadings. Then, the evaluation using the failure assessment diagram (FAD) is performed by postulating an external surface crack at the critical location to determine the critical crack depth. It is found that, for the drop cases considered in this paper, the principal failure mechanism for the circumferential surface crack is found to be the plastic collapse due to dominant high bending axial stress in the thickness. For axial cracks, the plastic collapse is also the dominant failure mechanism due to high membrane hoop stress, followed by the ductile tearing analysis. When incorporating the strain rate effect on yield strength and fracture toughness, the critical crack depth increases from 10 to 20%.

Thermo-Mechanical Characteristics of a Plate Structure under Mechanical and Thermal Loading (외력과 열하중을 동시에 받는 판구조의 열-기계적 특성)

  • 김종환;이기범;황철규
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.11
    • /
    • pp.26-34
    • /
    • 2006
  • The thermo-mechanical analysis and test were performed for plate structure under mechanical and thermal loading conditions. Infrared heating system and hydraulic loading system were used to simulate mechanical and thermal environment for the plate structure which is similar to the fin of the airframe. Also, FEM analysis using plastic option was added to evaluate thermo-mechanical behavior. Thermo-mechanical tests were conducted at elevated temperature and rapid heating(10℃/sec) condition with external loading together. To investigate the effect of heating environment, the strength at room temperature was compared with that of elevated temperature and rapid heating condition. A methodology for test and analysis for supersonic vehicle subjected to aerodynamic loading and heating was generated through the study. These experimental and analysis results can be used for designing thermal resistance structures of the supersonic vehicle.

Structure Analysis on Automotive Seat Recliner Housing with High Tension Steel Plate (고장력 강판으로 된 자동차 시트 리크라이너 하우징에 대한 구조 해석)

  • Cho, Ho-Sun;Kim, Key-Sun;Choi, Doo-Seuk;Kim, Young-Chun;Park, Sang-Heup;Oh, Bum-Suk;Cho, Jae-Ung;Kook, Jeong-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.8
    • /
    • pp.3644-3649
    • /
    • 2013
  • Automotive seat recliner has the function to control the angle at the back of chair and has the relation close to the safety of seat. Therefore each of parts constituting the recliner is important and the recliner housing to protect these parts from various dynamic loads is also important. In this study, the recliner housing with t=3mm which is made of high tension steel plate(SPFC 980) is applied to actual automotive seat. The deformation is investigated through the durability tester. Deformation and equivalent stress are also analyzed by simulation analysis under the same condition with experiment. After recliners with thicknesses of 1mm and 2mm are modeled by bases of experimental and analysis values, deformation and equivalent stress are investigated through structural analysis.

Effects of Strain-Induced Crystallization on Mechanical Properties of Elastomeric Composites Containing Carbon Nanotubes and Carbon Black (탄소나노튜브 및 카본블랙 강화 고무복합재료의 변형에 의한 결정화가 기계적 특성에 미치는 영향)

  • Sung, Jong-Hwan;Ryu, Sang-Ryeoul;Lee, Dong-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.999-1005
    • /
    • 2011
  • The effects of strain-induced crystallization (SIC) on the mechanical properties of elastomeric composites as functions of extension ratio (${\lambda}$), multiwalled carbon nanotube (CNT) content, and carbon black (CB) content are investigated. The differential scanning calorimetry (DSC) analysis shows that the degree of crystallinity increases with the increase in the CB and CNT content. As ${\lambda}$ increases, the glass transition temperature (Tg) of the composites increases, and the latent heat of crystallization (LHc) of the composites is maximum at ${\lambda}$=1.5. It is found that the mechanical properties have a linear relation with LHc, depending on the CNT content. According to the TGA (thermogravimetric analysis), the weight loss of the composite matrix is 94.3% and the weight of the composites decreases with the filler content. The ratio of tensile modulus ($E_{comp}/E_{matrix}$) is higher than that of tensile strength (${\sigma}_{comp}/{\sigma}_{matrix}$) because of the CNT orientation inside the elastomeric composites.