DOI QR코드

DOI QR Code

Fracture mechanics analysis of multipurpose canister for spent nuclear fuels under horizontal/oblique drop accidents

  • Jae-Yoon Jeong (Korea University, Department of Mechanical Engineering) ;
  • Cheol-Ho Kim (Korea University, Department of Mechanical Engineering) ;
  • Hune-Tae Kim (Korea Hydro & Nuclear Power Co., Ltd, Central Research Institute) ;
  • Ji-Hye Kim (Korea University, Department of Mechanical Engineering) ;
  • Yun-Jae Kim (Korea University, Department of Mechanical Engineering)
  • Received : 2023.03.24
  • Accepted : 2023.09.03
  • Published : 2023.12.25

Abstract

In this paper, elastic-plastic fracture mechanics analysis is performed to determine the critical crack sizes of the multipurpose canister (MPC) manufactured using austenitic stainless steel under dynamic loading conditions that simulate drop accidents. Firstly, dynamic finite element (FE) analysis is performed using Abaqus v.2018 with the KORAD (Korea Radioactive Waste Agency)-21 model under two drop accident conditions. Through the FE analysis, critical locations and through-thickness stress distributions in the MPC are identified, where the maximum plastic strain occurs during impact loadings. Then, the evaluation using the failure assessment diagram (FAD) is performed by postulating an external surface crack at the critical location to determine the critical crack depth. It is found that, for the drop cases considered in this paper, the principal failure mechanism for the circumferential surface crack is found to be the plastic collapse due to dominant high bending axial stress in the thickness. For axial cracks, the plastic collapse is also the dominant failure mechanism due to high membrane hoop stress, followed by the ductile tearing analysis. When incorporating the strain rate effect on yield strength and fracture toughness, the critical crack depth increases from 10 to 20%.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2019M2D2A2048296).

References

  1. J.R. Woo, J. Jang, H Bin Moon, J. Lee, Analyzing public preference and willingness to pay for spent nuclear fuel facilities in South Korea: a latent class approach, Prog. Nucl. Energy 100 (2017) 255-265, https://doi.org/10.1016/j.pnucene.2017.06.018. 
  2. J.I. Tani, M. Mayuzumi, T. Arai, N. Hara, Stress corrosion cracking growth rates of candidate canister materials for spent nuclear fuel storage in chloride-containing atmosphere, Mater. Trans. (2007), https://doi.org/10.2320/matertrans.MRA2006367. 
  3. A. Kosaki, Evaluation method of corrosion lifetime of conventional stainless steel canister under oceanic air environment, Nucl. Eng. Des. (2008), https://doi.org/10.1016/j.nucengdes.2007.03.040. 
  4. J.I. Tani, M. Mayuzumi, N. Hara, Initiation and propagation of stress corrosion cracking of stainless steel canister for concrete cask storage of spent nuclear fuel, Corrosion (2009), https://doi.org/10.5006/1.3319127. 
  5. Y. Xie, J. Zhang, Chloride-induced stress corrosion cracking of used nuclear fuel welded stainless steel canisters: a review, J. Nucl. Mater. (2015), https://doi.org/10.1016/j.jnucmat.2015.07.043. 
  6. H. Yeom, T. Dabney, N. Pocquette, K. Ross, F.E. Pfefferkorn, K. Sridharan, Cold spray deposition of 304L stainless steel to mitigate chloride-induced stress corrosion cracking in canisters for used nuclear fuel storage, J. Nucl. Mater. 538 (2020), 152254, https://doi.org/10.1016/j.jnucmat.2020.152254. 
  7. W. Navidi, Z. Shayer, An application of stochastic modeling to pitting of Spent Nuclear Fuel canisters, Prog. Nucl. Energy (2018), https://doi.org/10.1016/j.pnucene.2018.04.005. 
  8. J.Y. Jeong, M.W. Lee, Y.J. Kim, P.S. Lam, A.J. Duncan, Chloride-induced stress corrosion cracking tester for austenitic stainless steel, J. Test. Eval. (2021), https://doi.org/10.1520/JTE20200115. 
  9. P. Dong, G.G. Scatigno, M.R. Wenman, Effect of salt composition and microstructure on stress corrosion cracking of 316L austenitic stainless steel for dry storage canisters, J. Nucl. Mater. 545 (2021), 152572, https://doi.org/10.1016/j.jnucmat.2020.152572. 
  10. J.Y. Jeong, C.W. Jeong, Y.J. Kim, C.H. Jang, Effect of stress magnitude on pit growth rate of 304 austenitic stainless steel in chloride environments, Metals (2021), https://doi.org/10.3390/met11091415. 
  11. R. Schoell, L. Xi, Y. Zhao, X. Wu, Y. Hong, Z. Yu, D. Kaoumi, Mechanism of chlorine-induced stress corrosion cracking of two 304 SS heats in simulated marine environment through in situ X-ray tomography and diffraction: role of deformation induced martensite and crack branching, Mater. Char. (2022), https://doi.org/10.1016/j.matchar.2022.112020. 
  12. IAEA, Regulations for the safe transport of radioactive material, specific safety requirements No, SSR 6 (2018). 
  13. U.S. Nuclear Regulatory Commission, RG 7.8, Rev. 1, Load Combinations for the Structural Analysis of Shipping Casks for Radioactive Material, 1989. 
  14. U.S. Nuclear Regulatory Commission, RG 7.6, Rev. 1, Design Criteria for the Structural Analysis of Shipping Cask Containment Vessels, 1978.
  15. U.S. Nuclear Regulatory Commission, NUREG-2215, Standard Review Plan for Spent Fuel Dry Storage Systems and Facilities, 2020. 
  16. K.S. Kim, J.S. Kim, K.S. Choi, T.M. Shin, Yun H. Do, Dynamic impact characteristics of KN-18 SNF transport cask - Part 1: an advanced numerical simulation and validation technique, Ann. Nucl. Energy 37 (2010) 546-559, https://doi.org/10.1016/j.anucene.2009.12.023. 
  17. K.S. Kim, J.S. Kim, K.S. Choi, T.M. Shin, Yun H. Do, Dynamic impact characteristics of KN-18 SNF transport cask - Part 2: sensitivity analysis of modeling and design parameters, Ann. Nucl. Energy 37 (2010) 560-571, https://doi.org/10.1016/j.anucene.2009.12.024. 
  18. T.Y. Wu, H.Y. Lee, L.C. Kang, Dynamic response analysis of a spent-fuel dry storage cask under vertical drop accident, Ann. Nucl. Energy 42 (2012) 18-29, https://doi.org/10.1016/j.anucene.2011.12.016. 
  19. N.A. Klymyshyn, H.E. Adkins, C.S. Bajwa, J.M. Piotter, Package impact models as a precursor to cladding analysis, J Press Vessel Technol Trans ASME 135 (2013) 1-7, https://doi.org/10.1115/1.4007469. 
  20. K. Sharma, D.N. Pawaskar, A. Guha, R.K. Singh, Optimization of cask for transport of radioactive material under impact loading, Nucl. Eng. Des. 273 (2014) 190-201, https://doi.org/10.1016/j.nucengdes.2014.03.021. 
  21. R. Lo Frano, A. Sanfiorenzo, Demonstration of structural performance of IP-2 package by simulation and full-scale horizontal free drop test, Prog. Nucl. Energy 86 (2016) 40-49, https://doi.org/10.1016/j.pnucene.2015.09.014. 
  22. S.P. Kim, J. Kim, D. Sohn, H. Kwon, M. Shin, Stress-based vs. Strain-based safety evaluations of spent nuclear fuel transport casks in energy-limited events, Nucl. Eng. Des. 355 (2019), 110324, https://doi.org/10.1016/j.nucengdes.2019.110324. 
  23. H.T. Kim, J.M. Seo, K.W. Seo, S.H. Yoon, Y.J. Kim, C.Y. Oh, Effect of material hardening model for canister on finite element cask drop simulation for strain-based acceptance evaluation, Nucl. Eng. Technol. 54 (2022) 1098-1108, https://doi.org/10.1016/j.net.2021.09.006. 
  24. E.H. Lee, C. Ra, H. Roh, S.J. Lee, N.C. Park, Sensitivity of SNF transport cask response to uncertainty in properties of wood inside the impact limiter under drop accident conditions, Nucl. Eng. Technol. 54 (10) (2022) 3766-3777, https://doi.org/10.1016/j.net.2022.05.028. 
  25. P.C. Jia, H. Wu, L.L. Ma, Q. Peng, Feasibility of UHPC shields in spent fuel vertical concrete cask to resist accidental drop impact, Nucl. Eng. Technol. 54 (2022) 4146-4158, https://doi.org/10.1016/j.net.2022.07.012. 
  26. M. Hanifehzadeh, B. Gencturk, A. Attar, K. Willam, Multi-hazard performance of reinforced concrete dry casks subjected to chloride attack and tip-over impact, Ann. Nucl. Energy 108 (2017) 10-23, https://doi.org/10.1016/j.anucene.2017.04.032. 
  27. M.D. Champiri, A. Mohammadipour, R. Mousavi, K.J. Willam, B. Gencturk, Added mass effect for tip-over analysis of dry cask composite structures at two different scales, Ann. Nucl. Energy 110 (2017) 126-139, https://doi.org/10.1016/j.anucene.2017.06.028. 
  28. B. Almomani, S. Lee, H.G. Kang, Structural analysis of a metal spent-fuel storage cask in an aircraft crash for risk assessment, Nucl. Eng. Des. 308 (2016) 60-72, https://doi.org/10.1016/j.nucengdes.2016.07.014. 
  29. S. Lee, W.S. Choi, K.S. Seo, Safety assessment of a metal cask under aircraft engine crash, Nucl. Eng. Technol. 48 (2016) 505-517, https://doi.org/10.1016/j.net.2015.11.002. 
  30. B. Almomani, S. Lee, D. Jang, H.G. Kang, Probabilistic risk assessment of aircraft impact on a spent nuclear fuel dry storage, Nucl. Eng. Des. 311 (2017) 104-119, https://doi.org/10.1016/j.nucengdes.2016.11.012. 
  31. P. Lam, R.L. Sindelar, A.J. Duncan, A framework to develop flaw acceptance criteria for structural integrity assessment of multipurpose canisters for extended storage of used nuclear fuel, Am. Soc. Mech. Eng. Press. Vessel. Pip. Div. PVP (2014), https://doi.org/10.1115/PVP2014-28990. 
  32. P.S. Lam, R.L. Sindelar, Flaw Stability Considering Residual Stress for Aging Management of Spent Nuclear Fuel Multiple-Purpose Canisters, vol. 138, J Press Vessel Technol Trans ASME, 2016, https://doi.org/10.1115/1.4032279. 
  33. J. Shi, L. Wei, P. Lam, Flaw stability analysis of semi-elliptical surface cracks in canisters under the influence of welding residual stress, Am. Soc. Mech. Eng. Press. Vessel. Pip. Div. PVP (2016), https://doi.org/10.1115/PVP2016-63887. 
  34. T. Kim, H. Dho, C.Y. Baeg, G.U. Lee, Preliminary safety analysis of criticality for dual-purpose metal cask under dry storage conditions in South Korea, Nucl. Eng. Des. 278 (2014) 414-421, https://doi.org/10.1016/j.nucengdes.2014.08.008. 
  35. J.H. Ko, J.H. Park, I.S. Jung, G.U. Lee, C.Y. Baeg, T.M. Kim, Shielding analysis of dual purpose casks for spent nuclear fuel under normal storage conditions, Nucl. Eng. Technol. 46 (2014) 547-556, https://doi.org/10.5516/NET.08.2013.039. 
  36. J.M. Seo, S.S. Jeong, Y.J. Kim, J.W. Kim, C.Y. Oh, H. Tokunaga, et al., Modification of the johnson-cook model for the strain rate effect on tensile properties of 304/316 austenitic stainless steels, J Press Vessel Technol Trans ASME 144 (2022) 1-12, https://doi.org/10.1115/1.4050833. 
  37. G.R. Johnson, W.H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Eng. Fract. Mech. 21 (1985) 31-48, https://doi.org/10.1016/0013-7944(85)90052-9. 
  38. Dassault Systemes, SIMULIA User Assistance, Dassault Systems, Simulia Corp. Provid. RI, 2018, 2018. 
  39. S.H.S. Kang, D.H. Kim, Y.S. Chang, S.H. Lee, Integrity assessment of spent fuel assembly in vertically and obliquely dropping cask, J. Mech. Sci. Technol. 35 (2021) 3821-3827, https://doi.org/10.1007/s12206-021-2105-8. 
  40. D.H. Kim, K.S. Seo, K.H. Lee, S.J. Lee, J.M. Kim, Evaluation and verification of a structural safety analysis for a type B transport package for a radioactive waste drum, J. Mech. Sci. Technol. 21 (2007) 2031-2040, https://doi.org/10.1007/BF03177461. 
  41. API and ASME, Fitness-For-Service, API 579-1/ASME FFS-1-2021. 
  42. EDF Energy Nuclear Generation Ltd, R6-Assessment of the integrity of structures containing defects, ReVision 4 (2019). 
  43. ASME Boiler and Pressure Vessels Code Committee, ASME B&PV Code, Section XI, Nonmandatory Appendices, Appendix A: Analysis of Flaws, ASME, New York, 2019. 
  44. J.W. Kim, M.R. Choi, Y.J. Kim, Effect of loading rate on the fracture behavior of nuclear piping materials under cyclic loading conditions, Nucl. Eng. Technol. 48 (2016) 1376-1386, https://doi.org/10.1016/j.net.2016.06.006. 
  45. ASTM. E1820, Standard Test Method for Measurement of Fracture Toughness, ASTM International, West Conshohocken, 2017. 
  46. G.M. Wilkowski, J. Ahmad, A. Zahoor, C.W. Marschall, D. Broek, I.S. Abou-Sayed, et al., FRACTURE OF CIRCUMFERENTIALLY CRACKED TYPE 304 STAINLESS STEEL PIPES UNDER DYNAMICS LOADING, ASTM Spec. Tech. Publ., 1983, https://doi.org/10.1520/stp36775s. 
  47. J.W. Kim, S.B. Lee, M.R. Choi, Y.J. Kim, J-R fracture toughness of nuclear piping materials under excessive seismic loading condition, Am. Soc. Mech. Eng. Press. Vessel. Pip. Div. PVP (2016), https://doi.org/10.1115/PVP2016-63456.