• Title/Summary/Keyword: measurement Noise

Search Result 3,227, Processing Time 0.028 seconds

System Identification Using Mode Decoupling Controller : Application to a Structure with Hidden Modes (모드 분리 제어기를 이용한 시스템 규명 : 히든 모드를 갖는 구조물에의 적용)

  • Ha, Jae-Hoon;Park, Young-Jin;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1334-1337
    • /
    • 2006
  • System identification is the field of modeling dynamic systems from experimental data. As a modeling technique, we can mention finite element method (FEM). In addition, we are able to measure modal data as the experimental data. The system can be generally categorized into a gray box and black box. In the gray box, we know mathematical model of a system, but we don't know structural parameters exactly, so we need to estimate structural parameters. In the black box, we don't know a system completely, so we need to identify system from nothing. To date, various system identification methods have been developed. Among them, we introduce system realization theory which uses Hankel matrix and Eigensystem Realization Algorithm (ERA) that enable us to identify modal parameters from noisy measurement data. Although we obtain noise-free data, however, we are likely to face difficulties in identifying a structure with hidden modes. Hidden modes can be occurred when the input or output position comes to a nodal point. If we change a system using a mode decoupling controller, the hidden modes can be revealed. Because we know the perturbation quantities in a closed loop system with the controller, we can realize an original system by subtracting perturbation quantities from the closed loop system. In this paper, we propose a novel method to identify a structure with hidden modes using the mode decoupling controller and the associated example is given for illustration.

  • PDF

Reduction of Speckle Noise in Images Using Homomorphic Wavelet-Based MMSE Filter with Edge Detection (에지 영역을 고려한 호모모르픽 웨이브렛 기반 MMSE 필터를 이용한 영상 신호의 스펙클 잡음 제거)

  • 박원용;장익훈;김남철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.11C
    • /
    • pp.1098-1110
    • /
    • 2003
  • In this paper, we propose a homomorphic wavelet-based MMSE filter with edge detection to restore images degraded by speckle noise. In the proposed method, a noisy image is first transformed into logarithmic domain. Each pixel in the transformed image is then classified into flat and edge regions by applying DIP operator to the image restored by homomorphic directional MMSE filter. Each pixel in flat region is restored by homomorphic wavelet-based MMSE filter. Each pixel in edge region is restored by the weighted sum of the output of homomorphic wavelet-based MMSE filtering and that of homomorphic directional MMSE filtering. The restored image in spatial domain is finally obtained by applying the exponential function to the restored image in logarithmic domain. Experimental results show that the restored images by the proposed method have ISNR improvement of 3.3-4.0 ㏈ and ${\beta}$, a measurement parameter on edge preservation, improvement of 0.0103-0.0126 and superior subjective image quality over those by conventional methods.

Single-photon Detection at 1.5 ㎛ Telecommunication Wavelengths Using a Frequency up-conversion Detector (주파수 상향변환 검출기를 이용한 1.5 ㎛ 통신파장대역의 단일광자 측정)

  • Kim, Heon-Oh;Youn, Chun-Ju;Cho, Seok-Beom;Kim, Yong-Soo
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.5
    • /
    • pp.223-229
    • /
    • 2011
  • We present a low jitter frequency up-conversion detector based on quasi-phase matched sum frequency generation in a periodically poled $LiNbO_3$ waveguide for efficient single-photon detection at 1.5 ${\mu}m$ telecommunication wavelengths. The maximum detection efficiency and the noise count rate using the pump power of 300 mW and the pump wavelength of 974 nm are about 7% and 480 kHz, respectively. We also characterize the timing jitter of the frequency up-conversion detector by analyzing the time distribution of the detection outputs for photons generated through a picosecond pump pulsed spontaneous parametric downconversion. The minimum timing jitter was measured to be about 39.1 ps. Coincidence measurement with a narrow time window for pulsed up-conversion photons can eliminate the unwanted noise counts and maximize signal to noise ratio.

Automatic Noise Removal and Peak Detection Algorithm for ECG Measured from Capacitively Coupled Electrodes Included within a Cloth Mattress Pad (침대 패드 형태의 용량성 전극에서 측정된 심전도 신호를 처리하기 위한 자동 잡음 제거 및 피크 검출 알고리즘)

  • Lee, Won Kyu;Lee, Hong Ji;Yoon, Hee Nam;Chung, Gih Sung;Park, Kwang Suk
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.87-94
    • /
    • 2014
  • Recent technological advances have increased interest in personal health monitoring. Electrocardiogram(ECG) monitoring is a basic healthcare activity and can provide decisive information regarding cardiovascular system status. In this study, we developed a capacitive ECG measurement system that can be included within a cloth mattress pad. The device permits ECG data to be obtained during sleep by using capacitive electrodes. However, it is difficult to detect R-wave peaks automatically because signals obtained from the system can include a high level of noise from various sources. Because R-peak detection is important in ECG applications, we developed an algorithm that can reduce noise and improve detection accuracy under noisy conditions. Algorithm reliability was evaluated by determining its sensitivity(Se), positive predictivity(+P), and error rate(Er) by using data from the MIT-BIH Polysomnographic Database and from our capacitive ECG system. The results showed that Se = 99.75%, +P = 99.77%, and Er = 0.47% for MIT-BIH Polysomnographic Database while Se = 96.47%, +P = 99.32%, and Er = 4.34% for our capacitive ECG system. Based on those results, we conclude that our R-peak detection method is capable of providing useful ECG information, even under noisy signal conditions.

A Design of 1.42 - 3.97GHz Digitally Controlled LC Oscillator (1.42 - 3.97GHz 디지털 제어 방식 LC 발진기의 설계)

  • Lee, Jong-Suk;Moon, Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.7
    • /
    • pp.23-29
    • /
    • 2012
  • The LC-based digitally controlled oscillator (LC-DCO), a key component of the all digital phase locked loop (ADPLL), is designed using $0.18{\mu}m$ RFCMOS process with 1.8 V supply. The NMOS core with double cross-coupled pair is chosen to realize wide tuning range, and the PMOS varactor pair that has small capacitance of a few aF and the capacitive degeneration technique to shrink the capacitive element are adopted to obtain the high frequency resolution. Also, the noise filtering technique is used to improve phase noise performance. Measurement results show the center frequency of 2.7 GHz, the tuning range of 2.5 GHz and the high frequency resolution of 2.9 kHz ~7.1 kHz. Also the fine tuning range and the current consumption of the core could be controlled by using the array of PMOS transistors using current biasing. The current consumption is between 17 mA and 26 mA at 1.8V supply voltage. The proposed DCO could be used widely in various communication system.

A Gain Control Algorithm of Low Computational Complexity based on Voice Activity Detection (음성 검출 기반의 저연산 이득 제어 알고리즘)

  • Kim, Sang-Kuyn;Cho, Woo-Hyeong;Jeong, Min-A;Kwon, Jang-Woo;Lee, Sangmin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.5
    • /
    • pp.924-930
    • /
    • 2015
  • In this paper, we propose a novel approach of low computational complexity to improve the speech quality of the small acoustic equipment in noisy environment. The conventional gain control algorithm suppresses the noise of input signal, and then the part of wide dynamic range compression (WDRC) amplifies the undesired signal. The proposed algorithm controls the gain of hearing aids according to speech present probability by using the output of a voice activity detection (VAD). The performance of the proposed scheme is evaluated under various noise conditions by using objective measurement and yields superior results compared with the conventional algorithm.

Study on the Reconstruction of KSTAR Plasma Density Profiles Using Microwave Reflectometry (마이크로파 레플렉토메터리를 이용한 KSIAR 플라즈마 밀도분포 재구성에 관한 연구)

  • Roh Young-Su
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.8
    • /
    • pp.365-370
    • /
    • 2005
  • Microwave diagnostics have been widely utilized to measure the important parameters of high temperature and high density plasmas. Reflectometry is known as a promising microwave diagnostic which has a number of merits to measure electron density profiles. In the KSTAR device, X-mode FM reflectometry is planned to measure the plasma density profiles. FM reflectometry is required to extract phase information on raw mixer IF signals, thereby obtaining time-of-flight of reflectometry signals. It is known that the data analysis method is crucial to determine the performance of FM reflectometry In fact, there are several analysis programs which have been utilized in various FM systems. Since each program was developed for a specific device, however, it is difficult to directly apply it to a different reactor like the KSTAR device. It is necessary, therefore, to develop a data analysis program for the KSTAR FM reflectometry. In this paper, complex digital demodulation (CDM) and wavelet transformation are examined in terms of the performance of density profile reconstruction. For the comparison of both methods, FM reflectometry signals are generated on the basis of assumed profiles and the interaction of the X-mode wave and the plasma. In order to see how well both methods work under various conditions, three types of profiles are assumed and noise effects are included. As a result, both methods work well under the condition of gentle density gradient and small noise level. As density gradient becomes steeper and noise level gets higher. the reconstruction performance of wavelet is better than that of CDM.

A Comparative Study of Wave Height Estimation base on X-band Radar (X-band 레이더 기반 파고 추정 방법 비교 연구)

  • Yang, Young-Jun;Park, Jun-Soo;Park, Seung-Geun;Kwon, Sun-Hong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.5
    • /
    • pp.571-576
    • /
    • 2015
  • This paper presents a comparative study of wave height estimation method that was used for signal to noise ratio and shadowing ratio based on X-band marine radar. If the signal to noise ratio, and is widely used as a method for estimating an wave height, a new method is presented for shadowing ratio. In the case of radar images used in this study it is measuring the data from the coast of Ulsan Jujeon, compared with marine meteorological information from the Meteorological Agency measured a light beacon. We compared the measured data for about 34 days, the typhoon was measured, incluidng a period in the East Sea, and verify the results for various distribution of wave height. For estimate wave height using a shadowing ratio analysis, it does not require calibration and real-time advantages of this part, coming confirmed the possibility of the measurement, the cause detection error for radar image was caused due to determine.

The Analysis of The Kalman Filter Noise Factor on The Inverted Pendulum (도립진자 모델에서 칼만 필터의 잡음인자 해석)

  • Kim, Hoon-Hak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.5
    • /
    • pp.13-21
    • /
    • 2010
  • The Optimal results of Kalman Filtering on the Inverted Pendulum System requires an effective factor such as the noise covariance matrix Q, the measurement noise covariance matrix R and the initial error covariance matrix $P_0$. We present a special case where the optimality of the filter is not destroyed and not sensitive to scaling of these covariance matrix because these factors are unknown or are known only approximately in the practical situation. Moreover, the error covariance matrices issued by this method predict errors in the state estimate consistent with the scaled covariance matrices and not the issued state estimates. Various results using the scalar gain $\delta$ are derived to described the relations among the three covariance matrices, Kalman Gain and the error covariance matrices. This paper is described as follows: Section III a brief overview of the Inverted Pendulum system. Section IV deals with the mathematical dynamic model of the system used for the computer simulation. Section V presents a various simulation results using the scalar gain.

An Analysis of Characteristics of Underground Power line Communication Channel (지중 전력선 통신채널의 특성 해석)

  • Eom, Ki-Hwan;Shin, Jai-Ho;Lee, Seung-Joon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.5
    • /
    • pp.40-45
    • /
    • 2011
  • In this paper, to develop a broadband power line communication modem and network technologies, we analysis the characteristics of underground power line communication channel through actual tests. To measure the amount of attenuation by length and structure of broadband power line communication channel, we configure a measurement system of the channel with signal generator, spectrum analyzer and non-contacted coupler. For actual tests, we choose two of the longest lines among medium-voltage lines as a single line in the test lines and measure the characteristics of noise and signal attenuation level of the channel. The experimental results show that the channel has a impulse noise which can remarkably reduce communication capability. In the case of long lines, high-frequency attenuation appeared by length of the lines.