• Title/Summary/Keyword: measurement Noise

Search Result 3,227, Processing Time 0.026 seconds

A Study on Valuation about Acoustic Performance utilizing Auditory-Evocation for Grand Performance Hall of G Art Hall (가청화를 이용한 G예술회관의 대공연장 음향 성능평가에 관한 연구)

  • Kim, Nam-Don;Yun, Jae-Hyun;Kim, Jae-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.623-627
    • /
    • 2007
  • In case of the Grand Performance Hall, in view of its distinctiveness, since various Assembly Activity as well as Lecture together with the use for Music are important besides the purpose of Performance itself, the consideration with regard to the sound environment which enables to minimize the acoustic defect has appeared on the stage as an essential factor. On this viewpoint, this Study has attempted to examine the acoustic satisfaction degree and its response regarding to the grand performance hall by means of the measurement and valuation about the psychological volume of human-being using the auditory-evoked technology that possible to experience the Virtual Sound Field at the designing stage, after practice of the optimized acoustic design for the object of the grand performance hall on the step of construction. As the result of auditory-evocation, it was known that the valuation about the acoustic performance after reformation has been improved affirmatively than before reformation. It is considered that such outcome of the study could be utilized as the useful material that enables to improve the curtailment effect of construction cost and the acoustic performance, by means of the presupposition control about the acoustic problem from the stage of design, for the occasion when the similar Performance Hall is planning to build, hereafter.

  • PDF

Modeling of Median-plane Head-related Impulse Responses Using a Set of General Basis Functions (보편적인 기저함수를 이용한 중앙면상의 머리전달함수 모델링)

  • Hwang, Sung-Mook;Park, Young-Jin;Park, Youn-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.4
    • /
    • pp.448-457
    • /
    • 2008
  • A principal components analysis (PCA) of the median-plane head-related impulse responses (HRIRs) in the CIPIC HRTF database reveals that the individual HRIRs in the median plane can be adequately reconstructed by a linear combination of 12 orthonormal basis functions. These basis functions can be used to model arbitrary median-plane HRIRs, which are not included in the process to obtain the basis functions. Memory size can be reduced up to 5-fold depending on the number of HRIRs to be modeled. To clarify whether these basis functions can be used to model other set of arbitrary median plane HRIRs, a numerical error analysis for modeling and a series of subjective listening tests were carried out using the measured and modeled HRIRs. The results showed that the set of individual HRIRs in the median plane, which were measured in our lab using different measurement conditions, techniques, and source positions, can be modeled with reasonable accuracy. All subjects, involved in the subjective listening test, reported not only the accurate vertical perception but also the front-back discrimination with the modeled HRIRs based on 12 basis functions.

Sound Attenuation by Cylinders Arranged in a Lattice (격자구조로 배열된 실린더에 의한 음파감쇠)

  • Kim, Hyun-Sil;Kim, Sang-Ryul;Kim, Jae-Seung;Kim, Bong-Ki;Lee, Seong-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.11
    • /
    • pp.1013-1019
    • /
    • 2011
  • Sound attenuation of periodically arranged cylindrical rods is studied numerically and experimentally. Cross section of the cylinder is circular and arrays are in a square lattice. Cylinders are made of steel, and consist of five groups with different diameters from 27.2 mm to 48 mm. Each group has 5 rows, while number of cylinders in a row varies from 17 to 31. The area filling fraction is about 60~61 %, which leads to the stop bandgap(2.9 kHz ~ 8.4 kHz). Sound attenuation is computed using two-dimensional BEM, and measurement is done by using a speaker and microphones in a semi-anechoic room. Comparison of the results by BEM and experiment shows that attenuation spectra are qualitatively in agreement, although experiment gives higher attenuations than BEM. After results by BEM are scaled up in accordance with cylinder diameter, it is observed that attenuation curves are in good agreement, which confirms that analysis by BEM is done correctly. It is also found that the measured bandgaps are shifted toward lower frequency by 0.5 kHz ~ 1.2 kHz, when compared to the predictions obtained from infinitely repeated two-dimensional cylinder arrays.

A Case Study on the Engine Body Vibration Characteristics of Generator Set consists of Engine-resilient-mounted, Generator-rigid-mounted and Flexible-coupling (탄성지지된 엔진, 고정지지된 발전기 및 탄성 커플링으로 구성된 발전기 세트의 엔진 본체 진동 특성에 관한 사례 연구)

  • Kim, Hyojung;Kim, Sanghwan;Lee, Donchool
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.443-446
    • /
    • 2014
  • Recently the demand for natural gas as clean and safe energy due to concerns about global warming and interests in green ship is increasing. The dual fuel(DF) engine, one of environmentally friendly engines, is preferred for general merchant ships and power plants as well as LNG carriers. This is for the reasons of having higher efficiency and lower nitrogen and sulfur oxides emissions by operating on LNG fuel with a small amount of light fuel oil. In this study, the engine body vibration characteristics of 12V50DF in a generator set with engine-resilient-mounted, generator-rigid-mounted and flexible-coupling configuration are investigated through theoretical analysis and comprehensive vibration measurement. This analysis showed the dynamic behavior of engine excitation forces and seismic waves. And the suitable countermeasures for reducing vibration and safe operation are proposed.

  • PDF

Torsional Vibration Characteristics of Shaft Generating System Direct-coupled with Low-speed Two Stroke Diesel Engine (저속 2행정 디젤엔진과 직결된 축발전기의 비틀림 진동 특성)

  • Barro, Ronald D.;Kim, HongRyul;Truong, Hoang Nam;Lee, Donchool
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.1
    • /
    • pp.14-19
    • /
    • 2017
  • Fuel oil consumption cost varies depending on every ship operation and this roughly amounts to 70 % of shipping companies' total revenue. As such, efforts towards improved fuel economy are being pursued. An annual 1 % reduction in fuel consumption is perceived to result in saving tens million US dollars on the global fleet operation. One approach is the application of power take-off configurations which are seen to increase fuel oil economy and are suitable for power generation. In this study, the dynamic properties of a shaft generator coupled on a 10S90ME main engine of an 18 600 TEU container vessel is presented. The vibratory torque and angular velocity variation was examined through theoretical analysis and actual vibration measurement. The result of the study suggests a review on existing classification rules for generator design and the lowering of vibratory torque and angular velocity variation guideline.

Balancing Technic Based on Rotor Dynamics Analysis of Test Rig (Test Rig 동특성 분석에 따른 밸런싱 기술 적용)

  • Hwang, Dukyoung;Jung, Chonwoo;Park, Insun;Shin, Dongmin;Song, Jinseok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.2
    • /
    • pp.204-212
    • /
    • 2017
  • The rotor dynamics and balancing technic for rotating equipment during engineering and manufacture stage are to be carefully considered in order to minimize the operation troubles regarding vibration during commissioning stage. In this paper, the test rig, which includes the disks as balancing plane, is designed and manufactured, so that the characteristic of rotor dynamics can be analyzed such as critical speed and mode shape. The critical speed predicted through natural frequency analysis is verified by the actual measurement on bearing housing vibration during start-up condition of test rig. The low speed balancing and the operating speed balancing test are performed respectively with consideration of first critical speed, and the residual unbalance amounts are estimated in accordance with the relevant method described in API standard. In addition, the single and dual plane balancing are carried out on main disk and trim disk depended on phase information at each balancing step.

Measurement of Magnetostriction Characteristics of Electrical Steel Sheet using Three-axial Strain Gauge and Vector Single Sheet Tester (3축 Strain Gauge와 Vector Single Sheet Tester를 이용한 전기강판의 자왜 특성 측정)

  • Park, Chan-Hyuk;Cho, Hyun-Jin;Yoon, Hee-Sung;Ha, Jung-Woo;Kim, Joong-Kyoung;Koh, Chang-Seop
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1039-1045
    • /
    • 2014
  • Acoustic noise from a transformer, recently, has drawing more and more attentions. One of the main source of the noise is thought to be magnetostriction of the electrical steel sheets which compose transformer core. This paper deals with the magnetostriction of a highly grain-oriented electrical steel sheet measured by using a vector single sheet tester and a three-axial strain gauge. The results show that direction and axis ratio as well as the magnitude of the applied magnetic flux density contribute much to magnetostriction.

Real-Time Orbit Determination for Future Korean Regional Navigation Satellite System

  • Shin, Kihae;Oh, Hyungjik;Park, Sang-Young;Park, Chandeok
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.37-44
    • /
    • 2016
  • This paper presents an algorithm for Real-Time Orbit Determination (RTOD) of navigation satellites for the Korean Regional Navigation Satellite System (KRNSS), when the navigation satellites generate ephemeris by themselves in abnormal situations. The KRNSS is an independent Regional Navigation Satellite System (RNSS) that is currently within the basic/preliminary research phase, which is intended to provide a satellite navigation service for South Korea and neighboring countries. Its candidate constellation comprises three geostationary and four elliptical inclined geosynchronous orbit satellites. Relative distance ranging between the KRNSS satellites based on Inter-Satellite Ranging (ISR) is adopted as the observation model. The extended Kalman filter is used for real-time estimation, which includes fine-tuning the covariance, measurement noise, and process noise matrices. Simulation results show that ISR precision of 0.3-0.7 m, ranging capability of 65,000 km, and observation intervals of less than 20 min are required to accomplish RTOD accuracy to within 1 m. Furthermore, close correlation is confirmed between the dilution of precision and RTOD accuracy.

Damage assessment of shear buildings by synchronous estimation of stiffness and damping using measured acceleration

  • Shin, Soobong;Oh, Seong Ho
    • Smart Structures and Systems
    • /
    • v.3 no.3
    • /
    • pp.245-261
    • /
    • 2007
  • Nonlinear time-domain system identification (SI) algorithm is proposed to assess damage in a shear building by synchronously estimating time-varying stiffness and damping parameters using measured acceleration data. Mass properties have been assumed as the a priori known information. Viscous damping was utilized for the current research. To chase possible nonlinear dynamic behavior under severe vibration, an incremental governing equation of vibrational motion has been utilized. Stiffness and damping parameters are estimated at each time step by minimizing the response error between measured and computed acceleration increments at the measured degrees-of-freedom. To solve a nonlinear constrained optimization problem for optimal structural parameters, sensitivities of acceleration increment were formulated with respect to stiffness and damping parameters, respectively. Incremental state vectors of vibrational motion were computed numerically by Newmark-${\beta}$ method. No model is pre-defined in the proposed algorithm for recovering the nonlinear response. A time-window scheme together with Monte Carlo iterations was utilized to estimate parameters with noise polluted sparse measured acceleration. A moving average scheme was applied to estimate the time-varying trend of structural parameters in all the examples. To examine the proposed SI algorithm, simulation studies were carried out intensively with sample shear buildings under earthquake excitations. In addition, the algorithm was applied to assess damage with laboratory test data obtained from free vibration on a three-story shear building model.

Orbit Determination of KOMPSAT-1 and Cryosat-2 Satellites Using Optical Wide-field Patrol Network (OWL-Net) Data with Batch Least Squares Filter

  • Lee, Eunji;Park, Sang-Young;Shin, Bumjoon;Cho, Sungki;Choi, Eun-Jung;Jo, Junghyun;Park, Jang-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.1
    • /
    • pp.19-30
    • /
    • 2017
  • The optical wide-field patrol network (OWL-Net) is a Korean optical surveillance system that tracks and monitors domestic satellites. In this study, a batch least squares algorithm was developed for optical measurements and verified by Monte Carlo simulation and covariance analysis. Potential error sources of OWL-Net, such as noise, bias, and clock errors, were analyzed. There is a linear relation between the estimation accuracy and the noise level, and the accuracy significantly depends on the declination bias. In addition, the time-tagging error significantly degrades the observation accuracy, while the time-synchronization offset corresponds to the orbital motion. The Cartesian state vector and measurement bias were determined using the OWL-Net tracking data of the KOMPSAT-1 and Cryosat-2 satellites. The comparison with known orbital information based on two-line elements (TLE) and the consolidated prediction format (CPF) shows that the orbit determination accuracy is similar to that of TLE. Furthermore, the precision and accuracy of OWL-Net observation data were determined to be tens of arcsec and sub-degree level, respectively.