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The optical wide-field patrol network (OWL-Net) is a Korean optical surveillance system that tracks and monitors domestic 
satellites. In this study, a batch least squares algorithm was developed for optical measurements and verified by Monte 
Carlo simulation and covariance analysis. Potential error sources of OWL-Net, such as noise, bias, and clock errors, were 
analyzed. There is a linear relation between the estimation accuracy and the noise level, and the accuracy significantly 
depends on the declination bias. In addition, the time-tagging error significantly degrades the observation accuracy, while 
the time-synchronization offset corresponds to the orbital motion. The Cartesian state vector and measurement bias were 
determined using the OWL-Net tracking data of the KOMPSAT-1 and Cryosat-2 satellites. The comparison with known 
orbital information based on two-line elements (TLE) and the consolidated prediction format (CPF) shows that the orbit 
determination accuracy is similar to that of TLE. Furthermore, the precision and accuracy of OWL-Net observation data 
were determined to be tens of arcsec and sub-degree level, respectively.
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1. INTRODUCTION

Optical observation has been used to detect space objects 

and a considerable number of optical observation systems 

are available such as the ground-based electro-optical deep 

space surveillance (GEODSS; Henize et al. 1993), Lincoln 

near-Earth asteroid program (LINEAR; Stokes et al. 2000), 

and international scientific optical network (ISON; Molotov 

et al. 2008). The optical observation system is appropriate 

for the surveillance of space objects because it is not limited 

by the range to the object, unlike active tracking systems 

such as radar and laser. For this reason, a lot of research on 

orbit determination (OD) using optical measurements has 

been conducted. Sabol et al. (2007) developed a simplified 

covariance model to predict the orbital error uncertainty 

and demonstrated that high-accuracy orbit updates from 

angle-only data are available only if the eccentricity has a 

low uncertainty. Vallado & Agapov (2010) introduced OD 

results of geosynchronous (GEO) satellites using high-

quality optical data from ISON; an uncertainty of ~5 km was 

obtained using the least squares method. Tombasco (2011) 

addressed GEO orbit estimation using ground-based and 

space-based angle-only measurements and enhanced the 

accuracy based on GEO elements.

The optical wide-field patrol network (OWL-Net) is an 

optical surveillance system of space objects developed at the 

Korea Astronomy and Space Science Institute (KASI). The 

main goals of the system are the tracking and monitoring 

of domestic satellites to protect space assets. There are five 

observatories around the world, in Korea, Mongolia, Morocco, 
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Israel, and the USA. The OWL-Net provides topocentric right 

ascension and declination measurement data converted from 

the image pixel coordinates (Park et al. 2013).

The orbital states of low earth orbit (LEO) satellites were 

evaluated in previous studies based on OWL-Net data. Jo 

et al. (2015) utilized commercial OD software to achieve 

preliminary OD results and showed that the requirements 

of OD can be achieved. In another study, Park et al. (2015) 

utilized the same software and analyzed the OD accuracy 

according to the number of estimation points.

In this study, OD software for the optical surveillance of 

space objects was developed and the orbital states of two 

LEO satellites, KOMPSAT-1 and Cryosat-2, were determined 

using the software and OWL-Net data. In addition, the 

precision and accuracy of OWL-Net data were analyzed 

based on the simulation of potential error sources of OWL-

Net measurements such as noise, bias, and clock errors. 

The software is available to operate independent optical 

surveillance systems of space objects.

The batch least squares algorithm is introduced and 

verified in Section 2. The error sources of the OWL-Net are 

analyzed in Section 3. The estimation results using actual data 

are addressed and compared with known orbital information 

in Section 4 and Section 5 summarizes this paper.

2. BATCH LEAST SQUARES FILTER

The batch least squares algorithm is a post-processing 

estimation algorithm known as differential correction. It 

processes all data in a lump to determine the epoch states. 

Although this procedure is not appropriate for real-time 

systems, it is generally used because of some advantages. 

The batch estimation is simple and more accurate and 

robust compared with sequential estimation algorithms, 

such as the Kalman filter (Crassidis & Junkins 2011).

This section mathematically describes the algorithm 

including definitions of cost function, covariance matrix, 

and convergence criteria.

2.1 Methodology

The batch least squares algorithm estimates epoch states 

using a system model (F):

 Y = F(X) + ϵ (1)

In case of OD, Y is the measurement data set, ϵ is the meas-

urement noise vector, and X is a solve-for-vector, which is 

required such as the position and velocity vector (Schutz et 

al. 2004). The system model can be separated into dynamic 

and measurement models.

The estimation can be referred to as an optimization, 

which minimizes the cost function (Q), weighted sum of the 

squares of the measurement residual, and the difference 

from a priori states:
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where P
ΔX0

 and X
0
 are the a priori covariance matrix and state 

vector, respectively, and W is the weight matrix. The a priori 
covariance matrix and weight matrix reflect the a priori 
uncertainty and measurement white noise, respectively:

 P∆X = diag([σ
1
-2   ...   σn

-2])-1 (3)

where σj is the standard deviation of the jth element of the 

solve-for-vector, n is the dimension of the solve-for vector, 

and m is the number of measurement data.

If the a priori states are close enough to the true states, the 

system model and cost function can be linearized using the 

Taylor expansion. Hence, a normal equation is derived to 

evaluate the variate of the ith iteration (ΔXi) and the solve-

for-vector is then updated (Long et al. 1989):

 ΔX̂ = (HTWH + 
P-1

∆X0
)-1 (HT

i WΔYi + P-1
∆X0

(ΔX ̂ i-1 
-

 
X

0
))

  X̂ i = X̂ i-1 + ΔX̂ i 
(4)

where H is the Jacobian matrix, a partial derivative of the 

system model. It can be divided into state transition matrix 

(Φ) and sensitivity matrix (A) using the chain rule.

 H = AΦ (5)

When the solve-for-vectors are the Cartesian position and 

velocity vector (X = [r
1
  r

2
  r

3
  v

1
  v

2
  v

3
]T), and the measurement 

data consist of topocentric right ascension (α) and declination 

(δ), the sensitivity matrix is simply formulated:
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where 𝛒𝛒  is the relative position vector of the object with respect to the observatory 
( 𝐑𝐑obs = [𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜,1 𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜,2 𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜,3] ), i.e., 𝛒𝛒 = [𝜌𝜌1, 𝜌𝜌2, 𝜌𝜌3] = [𝑟𝑟1 − 𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜,1, 𝑟𝑟2 − 𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜,2, 𝑟𝑟3 − 𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜,3] . If the 
measurement bias (𝛃𝛃) is also estimated, following terms are added to the Jacobian matrix: 
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0 1] (7) 

 
where k is the scaling parameter, which is set to one by default. 

The whole process, which includes the prediction and update, is iterated until convergence is achieved. 
The convergence criterion is the cost reduction ratio (γ): 
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The estimation sequence is finished if the ratio becomes less than a small tolerance (𝜀𝜀) set as 10−3 by 
default, and it also terminated if the ratio is negative, which means increasing cost and maximum number of 
iterations are reached. 

The covariance matrix (P), which contains the statistical information of the estimation, is evaluated after 
convergence. The covariance matrix is evaluated as follows: 
 

𝐏𝐏Δ𝐗𝐗 = (𝐇𝐇T𝐖𝐖𝐇𝐇 + 𝐏𝐏Δ𝐗𝐗0
−1 )−1 (9) 

 
In this study, the general mission analysis tool (GMAT) is used as the dynamic model (Hughes et al. 

2014) and the state transition matrix is numerically evaluated. 
 

 
2.2 Algorithm Verification 

 
The covariance matrix estimated from the estimation algorithm has a statistical meaning and addresses 

the precision of the estimation. To confirm the validity of the estimated covariance matrix, Monte Carlo 
simulations were conducted and the results were compared. If the estimated covariance is equal to the results, 
the estimation is valid. 

Monte Carlo simulation was conducted for two different cases: states estimation with unbiased 
measurement data (Case 1) and states and bias estimation with biased measurement data (Case 2). Each case 
is simulated 1,000 times using the LEO. Table 1 lists the detailed configuration of the simulation. Instead of 
GMAT, two-body dynamics were assumed for simplification purposes based on the statistical independence 
of the system model. The pseudo-measurement properties of the OWL-Net measurement are: the pass length 
is an observable period; exposure time is the time when taking a picture; exposure period is the timespan 
between two pictures; and the data frequency is the number of extracted data points per second. 

 3 

  
𝐇𝐇 = 𝐀𝐀𝐀𝐀 (5) 

 
When the solve-for-vectors are the Cartesian position and velocity vector (𝐗𝐗 = [𝑟𝑟1 𝑟𝑟2 𝑟𝑟3 𝑣𝑣1 𝑣𝑣2 𝑣𝑣3]𝑇𝑇), 
and the measurement data consist of topocentric right ascension (α) and declination (δ), the sensitivity matrix 
is simply formulated: 

 

𝐀𝐀 = [𝜕𝜕𝜕𝜕
𝜕𝜕𝐗𝐗

𝜕𝜕𝜕𝜕
𝜕𝜕𝐗𝐗]

𝑇𝑇

=

[
 
 
 
 − 𝜌𝜌2

𝜌𝜌1
2 + 𝜌𝜌2

2
𝜌𝜌1

𝜌𝜌1
2 + 𝜌𝜌2

2 0 0 0 0

− 𝜌𝜌1𝜌𝜌3

𝜌𝜌2√𝜌𝜌1
2 + 𝜌𝜌2

2
𝜌𝜌2𝜌𝜌3

𝜌𝜌2√𝜌𝜌1
2 + 𝜌𝜌2

2
√𝜌𝜌1

2 + 𝜌𝜌2
2

𝜌𝜌2 0 0 0
]
 
 
 
 
 

(6) 

 
where 𝛒𝛒  is the relative position vector of the object with respect to the observatory 
( 𝐑𝐑obs = [𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜,1 𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜,2 𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜,3] ), i.e., 𝛒𝛒 = [𝜌𝜌1, 𝜌𝜌2, 𝜌𝜌3] = [𝑟𝑟1 − 𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜,1, 𝑟𝑟2 − 𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜,2, 𝑟𝑟3 − 𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜,3] . If the 
measurement bias (𝛃𝛃) is also estimated, following terms are added to the Jacobian matrix: 

 
𝜕𝜕𝐅𝐅
𝜕𝜕𝛃𝛃 = 𝑘𝑘 × [1 0

0 1] (7) 

 
where k is the scaling parameter, which is set to one by default. 

The whole process, which includes the prediction and update, is iterated until convergence is achieved. 
The convergence criterion is the cost reduction ratio (γ): 

 

γ = 𝑄𝑄𝑖𝑖 − 𝑄𝑄𝑖𝑖−1
𝑄𝑄𝑖𝑖

 (8) 

 
The estimation sequence is finished if the ratio becomes less than a small tolerance (𝜀𝜀) set as 10−3 by 
default, and it also terminated if the ratio is negative, which means increasing cost and maximum number of 
iterations are reached. 

The covariance matrix (P), which contains the statistical information of the estimation, is evaluated after 
convergence. The covariance matrix is evaluated as follows: 
 

𝐏𝐏Δ𝐗𝐗 = (𝐇𝐇T𝐖𝐖𝐇𝐇 + 𝐏𝐏Δ𝐗𝐗0
−1 )−1 (9) 

 
In this study, the general mission analysis tool (GMAT) is used as the dynamic model (Hughes et al. 

2014) and the state transition matrix is numerically evaluated. 
 

 
2.2 Algorithm Verification 

 
The covariance matrix estimated from the estimation algorithm has a statistical meaning and addresses 

the precision of the estimation. To confirm the validity of the estimated covariance matrix, Monte Carlo 
simulations were conducted and the results were compared. If the estimated covariance is equal to the results, 
the estimation is valid. 

Monte Carlo simulation was conducted for two different cases: states estimation with unbiased 
measurement data (Case 1) and states and bias estimation with biased measurement data (Case 2). Each case 
is simulated 1,000 times using the LEO. Table 1 lists the detailed configuration of the simulation. Instead of 
GMAT, two-body dynamics were assumed for simplification purposes based on the statistical independence 
of the system model. The pseudo-measurement properties of the OWL-Net measurement are: the pass length 
is an observable period; exposure time is the time when taking a picture; exposure period is the timespan 
between two pictures; and the data frequency is the number of extracted data points per second. 

 (6)

where ρ is the relative position vector of the object with respect 

to the observatory (R
obs 

= [r
obs,1

  r
obs,2

  r
obs,3

]), i.e., ρ = [ρ
1
, ρ

2
, ρ

3
] 

= [r
1
-r

obs,1
, r

2
-r

obs,2
, r

3
-r

obs,3
]. If the measurement bias (β) is also 

estimated, following terms are added to the Jacobian matrix:
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The estimation sequence is finished if the ratio becomes less 

than a small tolerance (ε) set as 10-3 by default, and it also 

terminated if the ratio is negative, which means increasing 

cost and maximum number of iterations are reached.

The covariance matrix (P), which contains the statistical 

information of the estimation, is evaluated after convergence. 

The covariance matrix is evaluated as follows:
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In this study, the general mission analysis tool (GMAT) 

is used as the dynamic model (Hughes et al. 2014) and the 

state transition matrix is numerically evaluated.

2.2 Algorithm Verification

The covariance matrix estimated from the estimation 

algorithm has a statistical meaning and addresses the 

precision of the estimation. To confirm the validity of the 

estimated covariance matrix, Monte Carlo simulations were 

conducted and the results were compared. If the estimated 

covariance is equal to the results, the estimation is valid.

Monte Carlo simulation was conducted for two different 

cases: states estimation with unbiased measurement data  

(Case 1) and states and bias estimation with biased measurement 

data (Case 2). Each case is simulated 1,000 times using the LEO. 

Table 1 lists the detailed configuration of the simulation. Instead 

of GMAT, two-body dynamics were assumed for simplification 

purposes based on the statistical independence of the system 

model. The pseudo-measurement properties of the OWL-Net 

measurement are as follows: the pass length is an observable 

period; exposure time is the time when taking a picture; exposure 

period is the timespan between two pictures; the data frequency 

is the number of extracted data points per second.

The precision of the estimation can be evaluated by the 

integration of a multivariable probability function. Especially 

in the case of multivariable space, several methods can be 

used to interpret the uncertainty of the variables such as the 

hyper-rectangle and hyper-ellipsoid methods (Long et al. 

1989). The probability that the three-dimensional position 

vector is within the 3σ range, for instance, is ~97 % and ~99 % 

based on the hyper-ellipsoid and hyper-rectangle methods, 

respectively. In this study, the hyper-ellipsoid method was 

used because the hyper-rectangle probability is a simple 

extension of the single Gaussian probability function.

In both cases, the algorithm was verified based on the 

statistical significance (97 %) of the results of the covariance 

ellipsoid. Fig. 1 shows the comparison between the results 

of the Monte Carlo simulation and the estimated covariance 

ellipsoid for both cases. Note that they are used only for 

algorithm verification and not for performance validation.

Table 1. Simulation environment for the verification of the batch least squares algorithm

Property
Value

Case 1 Case 2

Orbit

Epoch Time (UTC) 02 May 2010 00:01:04.000

Semi-Major Axis (km) 7,194.995

Eccentricity 0.001

Inclination (°) 97.507

Right Ascension of Ascending Node (°) 117.725

Argument of Perigee (°) 208.630

True Anomaly (°) 285.493

Dynamic Model 2-body (Matlab mex)

Estimation Convergence Criteria 10-3

A priori Uncertainty
Position (km) 1

Velocity (km/s) 0.001

Measurement

Pass Length (sec) 300

Exposure Time (sec) 4

Exposure Period (sec) 20

Data Frequency (sec) 10

Noise (arc-sec) 1

Bias (°) None 0.1
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3. ERROR ANALYSIS

As opposed to the simulated observation, which only has 

Gaussian white noise, the real observation has more error 

sources such as bias and clock errors. In this section, the 

effects of noise, bias, and clock errors are determined using 

simulations of pseudo-measurement data. The analyzed 

relationship of each error source with the OD result can be 

used to interpret and predict the actual OD result. Table 2 

lists common environments of all types of error analyses.

3.1 Noise

Noise is a random error generated by thermal radiation. 

It is equal to the precision of the observation and cannot be 

exactly estimated and corrected. To check the effect of noise 

on the accuracy of the estimation, the OD simulations were 

conducted 100 times using pseudo-measurements and 

varying noise levels from 1 to 150 arcsec without bias. Note 

that the range of noise level is set as a known property of the 

OWL-Net measurement.

Fig. 1. Comparison between the results of the Monte Carlo simulation and covariance ellipsoid under different conditions; measurement 
bias exists and is estimated (left); it does not exist and is not estimated (right); 97 % of the results plot inside the covariance ellipsoid in both 
cases, which means that the algorithm has statistical significance.

Table 2. Simulation environments for all types of error analyses

Property Value

Orbit

Epoch Time (UTC) 02 Feb 2016 03:00:59.600
Semi-Major Axis (km) 7,094.1112

Eccentricity 2.7417e-4
Inclination (°) 97.6172

Right Ascension of Ascending Node (°) 117.7144
Argument of Perigee (°) 240.6593

True Anomaly (°) 269.1909

Dynamic Model

EGM96 40 × 40
3rd body gravity 

(Sun, Moon and 9 planets, DE405)
Solar Radiation Pressure

Air drag (Jacchia-Roberts)
Estimation Convergence Criteria 10-3

A priori Uncertainty
Position (km) 10

Velocity (km/s) 0.01

Measurement

Pass Length (sec) 300
Exposure Time (sec) 4

Exposure Period (sec) 20
Data Frequency (sec) 10
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As a result, the residual exhibits the same distribution as 

the noise but without any trend (Fig. 2), which means that 

the resultant residual distribution can be conversely used to 

analyze the observation quality. In addition, the developed 

batch least squares filter reduces the a priori state error 

irrespective of the measurement noise.

Fig. 3 shows the root-mean-square (RMS) error of each 

state in earth centered inertial (ECI) and radial-tangential-

normal (RTN) coordinates. It is directly proportional to the 

noise level, that is, the observation precision, and much 

smaller than the a priori error. The magnitude of the position 

error depends on the axis, especially that of the z-axis and 

radial error are larger than that of other axes. This might be 

due to the characteristics of the optical observation, which 

cannot include the line of sight direction information.

3.2 Bias

Bias can be caused by various factors such as coordinate 

transformation, catalog matching errors, and clock errors (Son 

et al. 2015). Although it might not be a constant due to the 

nonlinearity of the system, it is considered as a constant for a 

short arc for simplicity in this paper. To examine how the bias 

affects the OD, the OD simulations were conducted 500 times 

using pseudo-measurements. The pseudo-measurements 

are generated with a random bias of 3° (1σ), which is not 

estimated, and a noise level of 40 arcsec. Note that the 

magnitude of the bias is set large enough to include many 

bias causes.

Approximately 70 % of the estimations converged; however, 

only 35 % of them converged with a proper answer and 30 % of 

Fig. 2. Comparison between the noise and residual, which are distributed in the same pattern.

Fig. 3. Noise effect on the accuracy of the orbit estimation in ECI (left) and RTN (right) coordinates. The RMS error of each state linearly depends on the 
noise level and most position errors are concentrated in the z-axis and radial component.
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the estimations even terminated in divergence. The results do 

not depend on the right ascension (RA) bias but they strongly 

depend on the declination (DEC) bias (Fig. 4). The estimation 

converges only if the DEC bias is larger than approximately 

-2°, whereas there is no dependence on the RA bias. The 

estimation accuracy of the normal cases is on the order of 

kilometers and that of wrong cases is on the order of several 

hundreds of kilometers. A separation criterion between 

normal and wrong cases is the cost (Eq. (2)) of 50, where the 

cost of unity represents that the a priori error is removed and 

the residual is normalized. Fig. 5 shows that the RA bias is 

randomly distributed, regardless of the criterion, while the 

DEC bias is notably separated due to the criterion.

This result probably depends on the orbit. Because the 

simulated orbit is almost polar (inclination of 97°), the 

declination changes more than the right ascension and 

the DEC bias is more influential than the RA bias. The 

relationship between the orbital characteristics and the effect 

of bias will be analyzed in the future.

3.3 Clock Error

The OWL observatory synchronizes time using a network 

time protocol (NTP) server, which has a precision on the order 

of 0.001 sec (Son et al. 2015). The data reduction algorithm 

includes a step to combine the extracted data points and time 

log (Park et al. 2013) based on which two types of clock errors 

are simulated. The first error is the time-synchronization 

offset (Case 1), where the whole time log is shifted. The other 

error is the time-tagging error (Case 2), where parts of the time 

logs are shifted. In case of the time-tagging error, the portions 

of the shifted observation are 25 % (Case 2-1), 50 % (Case 

2-2), and 75 % (Case 2-3). All cases are simulated 100 times 

with a noise level of 15 arcsec corresponding to the OWL-Net 

without bias.

Fig. 6 describes the effects of all types of clock errors onto the 

position and velocity. In case of the time-synchronization offset, 

the position error ranges from 1.5 to 7.6 km because the offset 

increases from 0.2 to 1 sec. The result corresponds to the orbital 

motion of LEO (~7 km/s). In contrast to the overall time offset, 

the time-tagging error is an error source that leads to irregular 

observation data. In Case 2-1, the cost is minimized when 

the estimated state corresponds to the normal measurement 

Fig. 4. Bias distribution comparison between the diverged and converged case. The RA bias 
shows no tendency; however, the DEC bias does. The estimation converges only if the DEC bias 
is smaller than ~2°.

Fig. 5. Cost distribution of convergence cases with respect to RA and 
DEC bias. The RA bias is randomly distributed independent of the cost. 
The DEC bias is, in contrast, notably separated by the criterion.
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because only 25 % of the measurement data have clock errors. 

On the other hand, 75 % of the measurement data have clock 

errors in Case 2-3 and the estimation thus corresponds to the 

error measurement. The estimation error is largest because the 

normal and abnormal measurements occupy the same portion 

in Case 2-2. In conclusion, the biggest state error is ~90 km in 

Case 2-2; Cases 2-1 and 2-3 have a similar level of state error.

4. OWL-NET APPLICATION

The OWL-Net observation data (topocentric right ascension, 

α, and declination, δ) of two LEO satellites, KOMPSAT-1 

and Cryosat-2, are available. KOMPSAT-1 is a Korean Earth 

observation satellite at an altitude of 685 km, which was 

launched in 1999 and completed its mission in 2008 (Kim 

et al. 2015). Cryosat-2, is another Earth observation satellite 

mission managed by the European Space Agency (ESA). It was 

launched in 2010 and measures the thickness of sea ice using 

radar altimetry at an altitude of 725 km (Kurtz et al. 2014). 

The data were applied to the estimation algorithm, which was 

verified to provide reliable estimation results. Furthermore, the 

characteristics of OWL-Net observation data were determined 

based on the error analysis explained in Section 3.

4.1 Data Overview

The OWL-Net observation data were provided in form of 

report files, which include the name of the target satellite, 

location of the observatory, exposure time, charged-coupled 

device (CCD) temperature, and time-tagged data points. Each 

file reflects a tracking pass of the satellite and consists of pictures 

from which the data points were extracted. Fig. 7 shows the data 

points extracted from a report file of KOMPSAT-1 and Cryosat-2. 

The arc of 4 min measured on November 5, 2014, and the arc 

of 5 min measured on May 25, 2015, were used for KOMPSAT-1 

and Cryosat-2, respectively. Note that the properties of the arc, 

such as length, extraction period, and number of data points, 

are different in the two cases.

4.2 Orbit Determination

The orbit of each satellite was determined using OWL-

Net observations and the developed algorithm (Section 2). 

The OD is conducted with and without bias estimation. The 

results of the Gauss method, which is one of the initial OD 

techniques, were used as a priori states. Other configuration 

details are listed in Table 3.

In case of KOMPSAT-1, the residual uniformly decreased 

from about 0.1° to 14 arcsec throughout the whole observation 

for both RA and DEC (Fig. 8). The estimated biases are 0.2738° 

and -0.0148° for RA and DEC, respectively.

The residuals of Cryosat-2 also reduced from several 

degrees to ~0.1° after OD processing. The pattern, however, 

is quite distinct from that of KOMPSAT-1; the residual is not 

uniform but exceptionally large in the beginning and end of 

the observation (Fig. 9). For this reason, only the middle part of 

Cryosat-2 data was used for OD, that is, data editing. To exclude 

abnormal measurement data from the OD process, data points 

extracted from specific pictures were removed, while the editing 

Fig. 6. Clock error effect on the estimation accuracy. Depending on the time-synchronization 
offset (Case 1), the position error ranges from 1.5 to 7.6 km, which corresponds to the orbital 
motion of LEO of ~7 km/s. In Case 2, the state error increased up to ~90 km. In contrast to the time-
synchronization offset, the time-tagging error leads to irregular observation data and the accuracy 
declines.
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usually eliminates part of the measurement of the threshold 

such as 3σ (Long et al. 1989). After data editing, the RA and 

DEC residuals are 74 and 28 arcsec, respectively (Fig. 10).  

The estimated RA bias is -0.0569° and the DEC bias is 0.0590°.

4.3 Orbit Quality Assessment

The results were compared with the two-line elements 

(TLE) of the corresponding satellite to determine the ac-

curacy of the estimation. The direct comparison of the 

Cartesian states, however, is improper because the estimated 

ephemeris has an accumulated error due to the epoch state 

and system errors. For this reason, the estimation result is 

compared with TLE in form of mean orbital elements, which 

do not change much due to orbital motion (Table 4). The 

estimation of the bias shows that the difference of the orbital 

elements with respect to TLE is smaller in both satellites. 

The differences of the semi-major axis (SMA), inclination, 

and right ascension of the ascending node (RAAN) are < 1 %.  

Because both orbits are almost circular, the arguments of 

the perigee and mean anomaly do not match well but their 

sums (argument of latitude) do. The eccentricity, however, 

is estimated to be several times the TLE, which might be due 

to the velocity error.

Furthermore, the result of the Cryosat-2 estimate was 

Fig. 7. Data points extracted from the report file of KOMPSAT-1 (left) and Cryosat-2 (right). Properties such as arc length, extraction period, 
and number of data points differ from arc to arc.

Fig. 8. A priori residual (left) and final residual after convergence (right) in the case of KOMPSAT-1. The residual decreased from ~0.1° to 14 arc 
seconds and is uniform throughout the whole observation for both RA and DEC.

Table 3. Configuration of the OD for KOMPSAT-1 and Cryosat-2 using 
OWL-Net data

Property Value

Dynamic Model

EGM96 40 × 40
3rd body gravity 

(Sun, Moon and 9 planets, DE405)
Solar Radiation Pressure

Air drag (Jacchia-Roberts)
A priori states Result of Gauss method

Estimation Convergence Criteria 10-3

D
EC

 (°
)

D
EC

 (°
)

D
EC

 (°
)

D
EC

 (°
)

RA
 (°

)
RA

 (°
)

RA
 (°

)

200 200

200 200

150 150

150 150

150 150

150 150

50 50

50 50

0 0

0 0

0 0

0 0

-0.05

-0.03

-0.02

-0.01

0.05
0.01

0.15 0.02

-0.1

0.1

0.2 0.03
RA

 (°
)

RA
 (°

)

Elapsed Time (sec)

Elapsed Time (sec)

KOMPSAT-1 Cryosat-2

Elapsed Time (sec)

Elapsed Time (sec)

Elapsed Time (sec)

Elapsed Time (sec) Elapsed Time (sec)

Elapsed Time (sec)



27 http://janss.kr 

Eunji Lee et al.   Orbit Determination Using OWL-Net Data of KOMPSAT-1 and Cryosat-2

Fig. 9. A priori residual (left) and final residual after convergence (right) in the case of Cryosat-2. The residual reduced from several degrees to ~0.1° 
and is exceptionally large in the beginning and end of the observation.

Fig. 10. The edited residual a priori (left) and after convergence (right) in the case of Cryosat-2. The RA and DEC residual change from ~0.1° to 74 and 
28 arc seconds, respectively.

Table 4. OD result using OWL-Net data of KOMPSAT-1 and Cryosat-2

KOMPSAT-1 Cryosat-2

TLE
w/o bias

(%)
With bias

(%)
TLE

w/o bias
(%)

With bias
(%)

SMA (km) 7,046.0072
7,025.3128
(-0.2937)

7,035.2137
(-0.1532)

7,096.8249
7,105.6220

(0.1240)
7,100.5171

(0.0520)

ECC 0.0006215
0.001639

(163.7827)
0.002030

(226.6122)
0.0009738

0.002441
(150.7478)

0.001998 
(100)

INC (°) 97.7585
97.8411 
(0.0845)

97.7406
(0.0183)

92.0277
92.0404
(0.0138)

92.0124
(-0.0166)

RAAN (°) 121.5607
121.3772
(-0.1510)

121.2336
(-0.2691)

20.0517
19.8592
(0.9601)

19.8877
(-0.8180)

AOP (°) 95.0345
184.5769
(94.2210)

143.1552
(-50.6350)

37.6167
111.7653

(197.1159)
95.4224

(153.6700)

MA (°) 306.4787
217.1521

(-29.1461)
258.5401

(-15.6417)
99.6421

23.3999
(-76.5160)

39.7498
(-60.1075)

The OD is conducted with and without bias estimation and both results are compared 
with TLE in form of mean orbital elements. The difference ratio of the orbital elements 
with respect to TLE is smaller when the bias is estimated in both satellites.

D
EC

 (°
)

D
EC

 (°
)

D
EC

 (°
)

D
EC

 (°
)

RA
 (°

)
RA

 (°
)

RA
 (°

)
RA

 (°
)

Elapsed Time (sec)

Elapsed Time (sec)

Elapsed Time (sec)

Elapsed Time (sec)

Elapsed Time (sec)

Elapsed Time (sec)

Elapsed Time (sec)

Elapsed Time (sec)



28https://doi.org/10.5140/JASS.2017.34.1.19

J. Astron. Space Sci. 34(1), 19-30 (2017)

compared with the reference trajectory, which was published 

in consolidated prediction format (CPF) based on the 

international laser ranging system (ILRS) (Pearlman et al. 

2002). The predicted trajectory is generated by prediction 

centers and regularly checked by several analytic centers, 

such as the Natural Environment Research Council (NERC); 

the accuracy is approximately several hundreds of meters 

(NERC Space Geodesy Facility 2017). It presents the three-

dimensional position in the true-body-fixed of date system 

of the international terrestrial reference frame (ITRF). In this 

study, CPF data provided by ESA were used to analyze, where 

the epoch time of the trajectory is at 0:00 am on May 25, 

2015, which is consistent with the observation date; the time 

interval of the position is 3 min. Fig. 11 shows the position 

difference in ITRF and RTN coordinates; each reference point 

is interpolated by the tenth order polynomial. The position 

difference at the epoch is ~0.8 km and most of the difference 

corresponds to the radial component and to the result of 

the simulation in Subsection 3.1. The result is similar to the 

results of previous studies, which reported that the RMS 

difference between TLE and the estimated orbit is < 10 km in 

case of Cryosat-2 (Park et al. 2015).

Considering the field of view of the OWL-Net, which is 

1.75° (Park et al. 2012), the position error of the LEO satellites 

should be lower than 20 km at the next arc for tracking. Fig. 12  

shows the position difference of the estimated orbit and 

TLE with respect to the reference trajectory in ITRF. Both 

are propagated for 90 min, a period of the LEO satellite; the 

maximum position difference of the estimation is ~70 km, 

while the TLE difference is ~30 km. This might be due to the 

velocity difference, which is also related to the eccentricity 

error. The estimation accuracy can be improved by resolving 

unknown error sources of the OWL-Net (Jo et al. 2015).

Based on the error analysis that shows that the precision 

Fig. 11. Position difference of the estimation with respect to SLR ephemeris of Cryosat-2 in ITRF (left) and RTN coordinates (right). Each reference point 
is interpolated by the tenth order polynomial. The position difference mostly corresponds to the radial component.

Fig. 12. Position difference of the estimated orbit (left) and TLE (right) with respect to SLR ephemeris of Cryosat-2 in the ITRF. Both trajectories are 
predicted for 90 min, that is, an orbital period. The position error is minimal at the epoch time and increases over time.
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of the measurement data is the same as that of the residual, 

the precision of the OWL-Net observation data is tens of 

arcsec. Based on the bias estimation, the accuracy of the 

observation data is also determined to be of sub-degree 

level.

5. SUMMARY AND CONCLUSIONS

Optical observation is suitable for the surveillance of 

space objects. The OWL-Net is a Korean optical surveillance 

system that tracks and monitors domestic satellites. In 

this study, the orbital states of two LEO satellites were 

determined using OWL-Net data and a batch least squares 

filter, which was developed and statistically verified. In 

addition, the precision and accuracy of OWL-Net data were 

analyzed based on the results of software simulations for 

error analysis.

The batch least squares filter processes all data to determine 

the epoch states; it is more robust to temporal measurement 

errors. The objective function is defined as the sum of the 

weighted residual and difference of the a priori states. The 

system model is composed of dynamic and measurement 

models. In this study, GMAT was utilized as the dynamic 

model and geometric RA/DEC was used as the measurement 

model. The system model was linearized to estimate the 

most probable epoch states; it turns into the states transition 

matrix and sensitivity matrix, where each matrix is numerically 

evaluated and analytically derived.

For statistical verification, Monte Carlo simulation was 

performed under two different conditions (unbiased meas-

urement data without bias estimation; biased measurement 

data with bias estimation) and the results were compared 

with the covariance matrix. The results correspond to the 

multivariate analysis of the covariance in both cases, where 

97 % of the estimation results plot inside the 3σ covariance 

ellipsoid.

Potential error sources of OWL-Net, noise, bias, and 

clock errors were analyzed using software simulations. The 

estimation accuracy depends linearly on the noise level and the 

declination bias has a significant influence on the estimation 

in a polar orbit. The estimation converges only with a DEC bias 

larger than approximately -2° and the estimation error increases 

to > 100 km when the DEC bias is larger than 2°. This is due to 

the orbital characteristics, although it is not the general feature. 

Two types of clock errors were analyzed, time synchronization 

offset and time-tagging error. The position error is ~7.6 km at 

a time-synchronization offset of 1 sec, which corresponds to 

an orbital velocity of ~8 km/s of LEO. The time-tagging error, 

however, increases the position error up to 90 km because it 

leads to irregular observation data.

The OWL-Net measurement data of KOMPSAT-1 and 

Cryosat-2 were provided by KASI and applied to the batch least 

squares algorithm. The Cartesian states were estimated by 

default and the measurement bias was optionally estimated. 

The estimated orbital states of both satellites are similar to those 

of TLE; however, the eccentricity error is significantly large. In 

case of Cryosat-2, the estimated trajectory was compared to 

the CPF trajectory in ITRF. Its difference is 0.8 km at the epoch 

time, which is similar to that of TLE and is in agreement with 

previous results (Park et al. 2015). However, the difference is ~70 

km after 90 min, while the corresponding value of TLE is ~30 

km. The precision of the OWL-Net data is tens of arcsec and the 

accuracy is of sub-degree level.

This study has nobility to demonstrate the operating 

capability of independent optical surveillance system of 

space objects. Unlike previous studies, which employed 

commercial software to examine OWL-Net measurement 

data, this study utilizes newly developed OD software. The 

results are similar to those of TLE. Because the software was 

statistically verified and examined under various conditions, 

the results are reliable and indicate the possibilities of 

independent space surveillance operations. The position 

error, however, increased when orbit propagation was 

performed, which might be due to the velocity error and 

can be improved through the use of parameter tuning and 

nonlinear estimation techniques. Furthermore, the precision 

and accuracy of OWL-Net measurement data was determined 

by interpreting the OD results. The performance of the OWL-

Net can be improved by stabilizing the system to resolve 

unknown error sources; other reliable optical measurements 

can be used to check the performance of the OD software and 

analyze OWL-Net measurement data in the future.
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