• Title/Summary/Keyword: measurable space

Search Result 94, Processing Time 0.024 seconds

A note on measurable fuzzy mappings (가측인 퍼지 사상의 특성)

  • Kim, Yun-Kyong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.277-280
    • /
    • 2002
  • In this paper, we characterize the Borel $\sigma$-field generated by the Hausdorff-Skorokhod metric on the space of normal and upper-semicontinuous fuzzy sets with compact support in the Ecleadean space R$\^$n/. As a result. we give a characterization of measurable fuzzy mappings .

  • PDF

A NEW NON-MEASURABLE SET AS A VECTOR SPACE

  • Chung, Soon-Yeong
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.3
    • /
    • pp.429-432
    • /
    • 2006
  • We use Cauchy's functional equation to construct a new non-measurable set which is a (vector) subspace of \mathbb{R}$ and is of a codimensiion 1, considering \mathbb{R}$, the set of real numbers, as a vector space over a field \mathbb{Q}$ of rational numbers. Moreover, we show that \mathbb{R}$ can be partitioned into a countable family of disjoint non-measurable subsets.

VECTOR EQUILIBRIUM PROBLEMS FOR TRIFUNCTION IN MEASURABLE SPACE AND ITS APPLICATIONS

  • RAM, TIRTH;KHANNA, ANU KUMARI
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.3_4
    • /
    • pp.577-585
    • /
    • 2022
  • In this work, we introduced and study vector equilibrium problems for trifunction in measurable space (for short, VEPMS). The existence of solutions of (VEPMS) are obtained by employing Aumann theorem and Fan KKM lemma. As an application, we prove an existence result for vector variational inequality problem for measurable space. Our results in this paper are new which can be considered as significant extension of previously known results in the literature.

EQUIVALENT NORMS IN A BANACH FUNCTION SPACE AND THE SUBSEQUENCE PROPERTY

  • Calabuig, Jose M.;Fernandez-Unzueta, Maite;Galaz-Fontes, Fernando;Sanchez-Perez, Enrique A.
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1387-1401
    • /
    • 2019
  • Consider a finite measure space (${\Omega}$, ${\Sigma}$, ${\mu}$) and a Banach space $X({\mu})$ consisting of (equivalence classes of) real measurable functions defined on ${\Omega}$ such that $f{\chi}_A{\in}X({\mu})$ and ${\parallel}f{\chi}_A{\parallel}{\leq}{\parallel}f{\parallel}$, ${\forall}f{\in}({\mu})$, $A{\in}{\Sigma}$. We prove that if it satisfies the subsequence property, then it is an ideal of measurable functions and has an equivalent norm under which it is a Banach function space. As an application we characterize norms that are equivalent to a Banach function space norm.

SOME REMARKS ON UNIVERSAL PETTIS INTEGRAL PROPERTY

  • Seung, Byong-In
    • The Pure and Applied Mathematics
    • /
    • v.4 no.1
    • /
    • pp.87-92
    • /
    • 1997
  • Some function of a complete finite measure space (for short, CFMS) into the duals and pre-duals of weakly compactly generated (for short, WCG) spaces are considered. We shall show that a universally weakly measurable function f of a CFMS into the dual of a WCG space has RS property and bounded weakly measurable functions of a CFMS into the pre-duals of WCG spaces are always Pettis integrable.

  • PDF

ON SOME PROPERTIES OF THE FUNCTION SPACE M

  • Lee, Joung-Nam
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.4
    • /
    • pp.677-685
    • /
    • 2003
  • Let M be the vector space of all real S-measurable functions defined on a measure space (X, S, $\mu$). In this paper, we investigate some topological structure of T on M. Indeed, (M, T) becomes a topological vector space. Moreover, if $\mu$, is ${\sigma}-finite$, we can define a complete invariant metric on M which is compatible with the topology T on M, and hence (M, T) becomes a F-space.

RANDOM FIXED POINT THEOREMS FOR CARISTI TYPE RANDOM OPERATORS

  • Beg, Ismat;Abbas, Mujahid
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.425-434
    • /
    • 2007
  • We iteratively generate a sequence of measurable mappings and study necessary conditions for its convergence to a random fixed point of random nonexpansive operator. A random fixed point theorem for random nonexpansive operator, relaxing the convexity condition on the underlying space, is also proved. As an application, we obtained random fixed point theorems for Caristi type random operators.

THE GENERALIZED ANALOGUE OF WIENER MEASURE SPACE AND ITS PROPERTIES

  • Ryu, Kun-Sik
    • Honam Mathematical Journal
    • /
    • v.32 no.4
    • /
    • pp.633-642
    • /
    • 2010
  • In this note, we introduce the definition of the generalized analogue of Wiener measure on the space C[a, b] of all real-valued continuous functions on the closed interval [a, b], give several examples of it and investigate some important properties of it - the Fernique theorem and the existence theorem of scale-invariant measurable subsets on C[a, b].

ON LEBESGUE NONLINEAR TRANSFORMATIONS

  • Ganikhodjaev, Nasir;Muhitdinov, Ramazon;Saburov, M.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.607-618
    • /
    • 2017
  • In this paper, we introduce a quadratic stochastic operators on the set of all probability measures of a measurable space. We study the dynamics of the Lebesgue quadratic stochastic operator on the set of all Lebesgue measures of the set [0, 1]. Namely, we prove the regularity of the Lebesgue quadratic stochastic operators.