• Title/Summary/Keyword: mean-shift algorithm

Search Result 141, Processing Time 0.027 seconds

Performance Analysis of Carrier Recovery for OFDM/QPSK-DMR System Using Band Limited-Pulse Shaping Filter (대역 제한 필터를 적용하는 OFDM/QPSK-DMR 시스템에 대한 Carrier Recovery의 성능 분석)

  • Ahn, Jun-Bae;Yang, Hee-Jin;Oh, Chang-Heon;Cho, Sung-Joon
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.403-406
    • /
    • 2003
  • In this paper, we have proposed a carrier recovery algorithm of OFDM/QPSK-DMR(Orthogonal Frequency Division Multiplexing/Quadrature Phase Shift Keying Modulation-Digital Microwave Radio)system using BL-PSF(Band Limited-Pulse Shaping Filter) and have analyzed the carrier phase MSE(Mean Square Error) performance of OFDM/QPSK and single carrier DMR systems. The existing OFDM/QPSK-DMR system using windowing requires training sequence or CP(Cyclic prefix) to synchronize a receive. carrier frequency. Because in the OFDM/QPSK-DMR system using BL-PSF there is no training sequence or CP(Cyclic Prefix), we also propose a carrier recovery useful to the system. The simulation results confirm that the proposed carrier recovery algorithm has the same carrier phase MSE(Mean Square Error) performance for the single carrier DMR system under AWGN(Additive White Gaussian Noise) environment.

  • PDF

Efficient Text Localization using MLP-based Texture Classification (신경망 기반의 텍스춰 분석을 이용한 효율적인 문자 추출)

  • Jung, Kee-Chul;Kim, Kwang-In;Han, Jung-Hyun
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.3
    • /
    • pp.180-191
    • /
    • 2002
  • We present a new text localization method in images using a multi-layer perceptron(MLP) and a multiple continuously adaptive mean shift (MultiCAMShift) algorithm. An automatically constructed MLP-based texture classifier generates a text probability image for various types of images without an explicit feature extraction. The MultiCAMShift algorithm, which operates on the text probability Image produced by an MLP, can place bounding boxes efficiently without analyzing the texture properties of an entire image.

Visual Target Tracking and Relative Navigation for Unmanned Aerial Vehicles in a GPS-Denied Environment

  • Kim, Youngjoo;Jung, Wooyoung;Bang, Hyochoong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.3
    • /
    • pp.258-266
    • /
    • 2014
  • We present a system for the real-time visual relative navigation of a fixed-wing unmanned aerial vehicle in a GPS-denied environment. An extended Kalman filter is used to construct a vision-aided navigation system by fusing the image processing results with barometer and inertial sensor measurements. Using a mean-shift object tracking algorithm, an onboard vision system provides pixel measurements to the navigation filter. The filter is slightly modified to deal with delayed measurements from the vision system. The image processing algorithm and the navigation filter are verified by flight tests. The results show that the proposed aerial system is able to maintain circling around a target without using GPS data.

MULTIPLE OUTLIER DETECTION IN LOGISTIC REGRESSION BY USING INFLUENCE MATRIX

  • Lee, Gwi-Hyun;Park, Sung-Hyun
    • Journal of the Korean Statistical Society
    • /
    • v.36 no.4
    • /
    • pp.457-469
    • /
    • 2007
  • Many procedures are available to identify a single outlier or an isolated influential point in linear regression and logistic regression. But the detection of influential points or multiple outliers is more difficult, owing to masking and swamping problems. The multiple outlier detection methods for logistic regression have not been studied from the points of direct procedure yet. In this paper we consider the direct methods for logistic regression by extending the $Pe\tilde{n}a$ and Yohai (1995) influence matrix algorithm. We define the influence matrix in logistic regression by using Cook's distance in logistic regression, and test multiple outliers by using the mean shift model. To show accuracy of the proposed multiple outlier detection algorithm, we simulate artificial data including multiple outliers with masking and swamping.

Tracking Players in Broadcast Sports

  • Sudeep, Kandregula Manikanta;Amarnath, Voddapally;Pamaar, Angoth Rahul;De, Kanjar;Saini, Rajkumar;Roy, Partha Pratim
    • Journal of Multimedia Information System
    • /
    • v.5 no.4
    • /
    • pp.257-264
    • /
    • 2018
  • Over the years application of computer vision techniques in sports videos for analysis have garnered interest among researchers. Videos of sports games like basketball, football are available in plenty due to heavy popularity and coverage. The goal of the researchers is to extract information from sports videos for analytics which requires the tracking of the players. In this paper, we explore use of deep learning networks for player spotting and propose an algorithm for tracking using Kalman filters. We also propose an algorithm for finding distance covered by players. Experiments on sports video datasets have shown promising results when compared with standard techniques like mean shift filters.

AdaBoost-based Real-Time Face Detection & Tracking System (AdaBoost 기반의 실시간 고속 얼굴검출 및 추적시스템의 개발)

  • Kim, Jeong-Hyun;Kim, Jin-Young;Hong, Young-Jin;Kwon, Jang-Woo;Kang, Dong-Joong;Lho, Tae-Jung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.11
    • /
    • pp.1074-1081
    • /
    • 2007
  • This paper presents a method for real-time face detection and tracking which combined Adaboost and Camshift algorithm. Adaboost algorithm is a method which selects an important feature called weak classifier among many possible image features by tuning weight of each feature from learning candidates. Even though excellent performance extracting the object, computing time of the algorithm is very high with window size of multi-scale to search image region. So direct application of the method is not easy for real-time tasks such as multi-task OS, robot, and mobile environment. But CAMshift method is an improvement of Mean-shift algorithm for the video streaming environment and track the interesting object at high speed based on hue value of the target region. The detection efficiency of the method is not good for environment of dynamic illumination. We propose a combined method of Adaboost and CAMshift to improve the computing speed with good face detection performance. The method was proved for real image sequences including single and more faces.

Optimal sensor placement for mode shapes using improved simulated annealing

  • Tong, K.H.;Bakhary, Norhisham;Kueh, A.B.H.;Yassin, A.Y. Mohd
    • Smart Structures and Systems
    • /
    • v.13 no.3
    • /
    • pp.389-406
    • /
    • 2014
  • Optimal sensor placement techniques play a significant role in enhancing the quality of modal data during the vibration based health monitoring of civil structures, where many degrees of freedom are available despite a limited number of sensors. The literature has shown a shift in the trends for solving such problems, from expansion or elimination approach to the employment of heuristic algorithms. Although these heuristic algorithms are capable of providing a global optimal solution, their greatest drawback is the requirement of high computational effort. Because a highly efficient optimisation method is crucial for better accuracy and wider use, this paper presents an improved simulated annealing (SA) algorithm to solve the sensor placement problem. The algorithm is developed based on the sensor locations' coordinate system to allow for the searching in additional dimensions and to increase SA's random search performance while minimising the computation efforts. The proposed method is tested on a numerical slab model that consists of two hundred sensor location candidates using three types of objective functions; the determinant of the Fisher information matrix (FIM), modal assurance criterion (MAC), and mean square error (MSE) of mode shapes. Detailed study on the effects of the sensor numbers and cooling factors on the performance of the algorithm are also investigated. The results indicate that the proposed method outperforms conventional SA and Genetic Algorithm (GA) in the search for optimal sensor placement.

Visual Object Tracking Fusing CNN and Color Histogram based Tracker and Depth Estimation for Automatic Immersive Audio Mixing

  • Park, Sung-Jun;Islam, Md. Mahbubul;Baek, Joong-Hwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1121-1141
    • /
    • 2020
  • We propose a robust visual object tracking algorithm fusing a convolutional neural network tracker trained offline from a large number of video repositories and a color histogram based tracker to track objects for mixing immersive audio. Our algorithm addresses the problem of occlusion and large movements of the CNN based GOTURN generic object tracker. The key idea is the offline training of a binary classifier with the color histogram similarity values estimated via both trackers used in this method to opt appropriate tracker for target tracking and update both trackers with the predicted bounding box position of the target to continue tracking. Furthermore, a histogram similarity constraint is applied before updating the trackers to maximize the tracking accuracy. Finally, we compute the depth(z) of the target object by one of the prominent unsupervised monocular depth estimation algorithms to ensure the necessary 3D position of the tracked object to mix the immersive audio into that object. Our proposed algorithm demonstrates about 2% improved accuracy over the outperforming GOTURN algorithm in the existing VOT2014 tracking benchmark. Additionally, our tracker also works well to track multiple objects utilizing the concept of single object tracker but no demonstrations on any MOT benchmark.

Multi-scale Image Segmentation Using MSER and its Application (MSER을 이용한 다중 스케일 영상 분할과 응용)

  • Lee, Jin-Seon;Oh, Il-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.3
    • /
    • pp.11-21
    • /
    • 2014
  • Multi-scale image segmentation is important in many applications such as image stylization and medical diagnosis. This paper proposes a novel segmentation algorithm based on MSER(maximally stable extremal region) which captures multi-scale structure and is stable and efficient. The algorithm collects MSERs and then partitions the image plane by redrawing MSERs in specific order. To denoise and smooth the region boundaries, hierarchical morphological operations are developed. To illustrate effectiveness of the algorithm's multi-scale structure, effects of various types of LOD control are shown for image stylization. The proposed technique achieves this without time-consuming multi-level Gaussian smoothing. The comparisons of segmentation quality and timing efficiency with mean shift-based Edison system are presented.

Fast Human Detection Algorithm for High-Resolution CCTV Camera (고해상도 CCTV 카메라를 위한 빠른 사람 검출 알고리즘)

  • Park, In-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.5263-5268
    • /
    • 2014
  • This paper suggests a fast human detection algorithm that can be applied to a high-resolution CCTV camera. Human detection algorithms, which used a HOG detector show high performance in the region of image processing. On the other hand, it is difficult to apply to real-time high resolution imaging because of its slow processing speed in the extracting figures of HOG. To resolve this problems, we suggest how to detect humans into two stages. First, candidates of a human region are found using background subtraction, and humans and non-humans are distinguished using a HOG detector only. This process increases the detection speed by approximately 2.5 times without any degradation in performance.