• 제목/요약/키워드: mean square slope

검색결과 61건 처리시간 0.026초

정보엔트로피 개념에 의한 하천 지형특성인자의 산정 (Estimation of Stream Geomorphological Characteristics Based on the Informational Entropy)

  • 전민우;이대규
    • 한국습지학회지
    • /
    • 제11권2호
    • /
    • pp.89-98
    • /
    • 2009
  • 본 연구는 하천종단면에 정보엔트로피이론을 적용하여 평균하천경사, 하천경사 및 하천종단고도 결정방법을 제시하였다. 최대화된 엔트로피는 제약조건하에서 일정한 하천종단면의 확률분포를 만들며, 이와 같은 관계를 이용하여 평균하천경사, 하천경사 및 하천종단고도 산정식을 유도하였다. 충북 지방하천 정비기본계획에서 얻은 달천유역의 실측된 지형학적 인자를 사용하여 매개변수를 최소자승법으로 결정하였다. 유도된 평균하천경사와 하천종단고도식을 실제유역에 적용하였으며, 실측치와 잘 일치함을 나타낸다. 본 연구의 결과로부터 평균하천경사와 하천종단고도의 결정에 직접 적용할수 있을 것으로 판단된다.

  • PDF

Designs for Estimating the Derivatives on Response Surfaces

  • Park, Sung H.
    • Journal of the Korean Statistical Society
    • /
    • 제8권1호
    • /
    • pp.37-64
    • /
    • 1979
  • Criteria and designs are developed for estimating derivatives of P-variable second order polynomial response surfaces. The basic criterion used is mean square error of the estimated derivative, averaged over all directions and then averaged over a region of interest. A new design concept called slope-rotatability is introduced. A simplex optimization program is used to find minimum mena square error designs for the two variable case for $6 \leq N \leq 12$.

  • PDF

An Evaluation Method for Three-Dimensional Morphologies of Discontinuities considering the Shear Direction

  • Zhang, Qingzhao;Luo, Zejun;Pan, Qing;Shi, Zhenming;Jang, Bo-An
    • 지질공학
    • /
    • 제32권1호
    • /
    • pp.85-99
    • /
    • 2022
  • Rock discontinuities, as weak interfaces in rock, control mechanical properties of rock mass. Presence of discontinuities complicates the engineering properties of rock, which is the root of anisotropy and heterogeneity that have nonnegligible influences on the rock engineering. Morphological characteristics of discontinuities in natural rock are an important factor influencing the mechanical properties, particularly roughness, of discontinuities. Therefore, the accurate measurement and characterization of morphologies of discontinuities are preconditions for studying mechanical properties of discontinuities. Taking discontinuities in red sandstone as research objects, the research obtained three-dimensional (3D) morphologies of discontinuities in natural rock by carrying out 3D morphological scanning tests. The waviness and roughness were separated from 3D morphologies of rock discontinuities through wavelet transform. In addition, the calculation method for the overall slope root mean square (RMS) as well as slope RMSs of waviness and roughness of 3D morphologies of discontinuities considering the shear direction was proposed. The research finally determined an evaluation method for 3D morphologies of discontinuities by quantitatively characterizing 3D morphologies with the mean value of the three slope RMSs.

Assessment of slope stability using multiple regression analysis

  • Marrapu, Balendra M.;Jakka, Ravi S.
    • Geomechanics and Engineering
    • /
    • 제13권2호
    • /
    • pp.237-254
    • /
    • 2017
  • Estimation of slope stability is a very important task in geotechnical engineering. However, its estimation using conventional and soft computing methods has several drawbacks. Use of conventional limit equilibrium methods for the evaluation of slope stability is very tedious and time consuming, while the use of soft computing approaches like Artificial Neural Networks and Fuzzy Logic are black box approaches. Multiple Regression (MR) analysis provides an alternative to conventional and soft computing methods, for the evaluation of slope stability. MR models provide a simplified equation, which can be used to calculate critical factor of safety of slopes without adopting any iterative procedure, thereby reducing the time and complexity involved in the evaluation of slope stability. In the present study, a multiple regression model has been developed and tested its accuracy in the estimation of slope stability using real field data. Here, two separate multiple regression models have been developed for dry and wet slopes. Further, the accuracy of these developed models have been compared and validated with respect to conventional limit equilibrium methods in terms of Mean Square Error (MSE) & Coefficient of determination ($R^2$). As the developed MR models here are not based on any region specific data and covers wide range of parametric variations, they can be directly applied to any real slopes.

Slope stability prediction using ANFIS models optimized with metaheuristic science

  • Gu, Yu-tian;Xu, Yong-xuan;Moayedi, Hossein;Zhao, Jian-wei;Le, Binh Nguyen
    • Geomechanics and Engineering
    • /
    • 제31권4호
    • /
    • pp.339-352
    • /
    • 2022
  • Studying slope stability is an important branch of civil engineering. In this way, engineers have employed machine learning models, due to their high efficiency in complex calculations. This paper examines the robustness of various novel optimization schemes, namely equilibrium optimizer (EO), Harris hawks optimization (HHO), water cycle algorithm (WCA), biogeography-based optimization (BBO), dragonfly algorithm (DA), grey wolf optimization (GWO), and teaching learning-based optimization (TLBO) for enhancing the performance of adaptive neuro-fuzzy inference system (ANFIS) in slope stability prediction. The hybrid models estimate the factor of safety (FS) of a cohesive soil-footing system. The role of these algorithms lies in finding the optimal parameters of the membership function in the fuzzy system. By examining the convergence proceeding of the proposed hybrids, the best population sizes are selected, and the corresponding results are compared to the typical ANFIS. Accuracy assessments via root mean square error, mean absolute error, mean absolute percentage error, and Pearson correlation coefficient showed that all models can reliably understand and reproduce the FS behavior. Moreover, applying the WCA, EO, GWO, and TLBO resulted in reducing both learning and prediction error of the ANFIS. Also, an efficiency comparison demonstrated the WCA-ANFIS as the most accurate hybrid, while the GWO-ANFIS was the fastest promising model. Overall, the findings of this research professed the suitability of improved intelligent models for practical slope stability evaluations.

Slope stability analysis using black widow optimization hybridized with artificial neural network

  • Hu, Huanlong;Gor, Mesut;Moayedi, Hossein;Osouli, Abdolreza;Foong, Loke Kok
    • Smart Structures and Systems
    • /
    • 제29권4호
    • /
    • pp.523-533
    • /
    • 2022
  • A novel metaheuristic search method, namely black widow optimization (BWO) is employed to increase the accuracy of slope stability analysis. The BWO is a recently-developed optimizer that supervises the training of an artificial neural network (ANN) for predicting the factor of safety (FOS) of a single-layer cohesive soil slope. The designed slope bears a loaded foundation in different distances from the crest. A sensitivity analysis is conducted based on the number of active individuals in the BWO algorithm, and it was shown that the best performance is acquired for the population size of 40. Evaluation of the results revealed that the capability of the ANN was significantly enhanced by applying the BWO. In this sense, the learning root mean square error fell down by 23.34%. Also, the correlation between the testing data rose from 0.9573 to 0.9737. Therefore, the postposed BWO-ANN can be promisingly used for the early prediction of FOS in real-world projects.

Tribological approach for the analysis of the pedestrain slipping accident II

  • Kim, Inju
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1996년도 춘계공동학술대회논문집; 공군사관학교, 청주; 26-27 Apr. 1996
    • /
    • pp.662-666
    • /
    • 1996
  • The variations of the surface topographical parameters for the analysis of the pedestrian slip and fall accidents during the sliding friction between the specially prepared floor specimens and three working shoes were investigated. The profile ordinate data for each flooring specimen were obtained at 1.1 .mu.m intervals using a laser scanning confocal microscope system along to the direction of sliding. A number of surface roughness parameters, that is, the centre line average (c.l.a.) and root mean square (r.m.s.) roughness, maximum height (Rtm), maximum mean peak height (Rpm), maximum mean depth (Rvm), and average asperity slope were calculated using a computer program and compared with the dynamic friction results. The analysis showed that the surface parameters undergo marked variations during the sliding process, but the variations were statistically significant. It was found that amongst various surface parameters, the maximum depth (Rvm) and the average asperity slope of the asperities were the biggest variation during the sliding proceeding. This result confirms the previous study and may suggests a new approach to monitoring the flooring environments with their service as the effort to reduce the pedestrain slip accident.

  • PDF

황금비에 대한 통계적 고찰

  • 차경준;박영선;박진희
    • 한국수학사학회지
    • /
    • 제13권2호
    • /
    • pp.105-120
    • /
    • 2000
  • In this study, it is certified that the golden ratio exists in the plants, the animals and human bodies(appearance), and is considered how much the ratio of positive and negative is in the psychological, political, social and cultural aspects. The result of this study shows that the golden sections or golden rectangles of the plants(N=58), the insects(N=44), the animals(N=21) and human bodies(N=260) are equal to $0.620{\pm}0.117$, $0.632{\pm}0.203$, $0.625{\pm}0.138$ and $0.60{\pm}0.169$, respectively. The slope in the regression analysis is equal to 0.627(R-square=0.925, p-value=0.0001). Whereas, for the public opinion poll, the ratios($mean{\pm}st.dev.$) of positive and negative of the public mental phenomena are equal to $0.508{\pm}0.179$, $0.808{\pm}0.216$ and $0.711{\pm}0.128$ in the political, economical, and sociocultural aspects, respectively. The slope in the regression is equal to 0.674(R-square=0.764, p-value=0.016). As results, we show that the golden ratio exists in the plants, the animals and human bodies in nature. This shows that the public mental phenomena has some more negative aspects than positive aspects and explains the shrinkage of the public mental phenomena in the economical field.

  • PDF

천리안 위성을 이용한 위성통신 공공 테스트베드 포워드링크 ACM 구축을 위한 예측기법 연구 (A Study on Prediction method for Forward link ACM of Satellite Communication Public Testbed via COMS)

  • 류준규;홍성용
    • 한국위성정보통신학회논문지
    • /
    • 제7권1호
    • /
    • pp.82-85
    • /
    • 2012
  • 본 논문은 천리안 위성을 이용하여 운용중인 공공 테스트베드의 가용율 및 시스템 throughput 향상을 위해 포워드 링크 ACM(Adaptive Coding & Modulation) 방안에 대해 소개하고, 포워드링크에 ACM 기능을 구현하기 위한 채널 상태를 예측하기위한 알고리즘으로 기울기를 이용한 예측 기법과 LMS(Least Mean Square)를 이용한 예측 기법의 성능을 비교하였다. 시뮬레이션 결과 LMS 기법을 이용한 예측기법은 99%가 3dB 이내의 예측 오차를 보였고, 기울기를 이용한 예측 기법은 99%가 4.5dB 이내의 예측 오차를 갖음을 알 수 있다.

The prediction of the critical factor of safety of homogeneous finite slopes subjected to earthquake forces using neural networks and multiple regressions

  • Erzin, Yusuf;Cetin, T.
    • Geomechanics and Engineering
    • /
    • 제6권1호
    • /
    • pp.1-15
    • /
    • 2014
  • In this study, artificial neural network (ANN) and multiple regression (MR) models were developed to predict the critical factor of safety ($F_s$) of the homogeneous finite slopes subjected to earthquake forces. To achieve this, the values of $F_s$ in 5184 nos. of homogeneous finite slopes having different slope, soil and earthquake parameters were calculated by using the Simplified Bishop method and the minimum (critical) $F_s$ for each of the case was determined and used in the development of the ANN and MR models. The results obtained from both the models were compared with those obtained from the calculations. It is found that the ANN model exhibits more reliable predictions than the MR model. Moreover, several performance indices such as the determination coefficient, variance account for, mean absolute error, root mean square error, and the scaled percent error were computed. Also, the receiver operating curves were drawn, and the areas under the curves (AUC) were calculated to assess the prediction capacity of the ANN and MR models developed. The performance level attained in the ANN model shows that the ANN model developed can be used for predicting the critical $F_s$ of the homogeneous finite slopes subjected to earthquake forces.