Discrete variable을 갖는 Mean Field Theory(MFT) neural network은 이미 많은 combinatorial optimization 문제에 적용되어져 왔다. 본 논문에서는 이를 확장하여 continuous variable을 갖는 mean field annealing을 제안하고, 이러한 network에서 integral로 표현되는 spin average를 mean field에 기초하여 어렵지 않게 구할 수 있는 one-variable stochastic simulated annealing을 제안하였다. 이런 방법으로 multi-body problem을 single-body problem으로 바꿀 수 있었다. 또한 이 방법을 이용한 응용으로서 통계학에서 잘 알려진 문제중의 하나인 quantification analysis 문제에 적용하여 타당성을 보였다.
Journal of information and communication convergence engineering
/
제8권1호
/
pp.13-18
/
2010
The composite stock cutting problem is defined as allocating rectangular and irregular patterns onto a large composite stock sheet of finite dimensions in such a way that the resulting scrap will be minimized. In this paper, we introduce a novel approach to hybrid optimization algorithm called MGA in MPI (Message Passing Interface) environments. The proposed MGA combines the benefit of rapid convergence property of Mean Field Annealing and the effective genetic operations. This paper also proposes the efficient data structures for pattern related information.
본 논문에서는 MPI(Message Passing Interface) 환경 하에서 채널배선 문제에 대한 분산 평균장 유전자 알고리즘(MGA, Mean field Genetic Algorithm)이라는 새로운 최적화 알고리즘을 제안한다. 분산 MGA는 평균장 어닐링(MFA, Mean Field Annealing)과 시뮬레이티드 어닐링 형태의 유전자 알고리즘(SGA, Simulated annealing-like Genetic Algorithm)을 결합한 경험적 알고리즘이다. 평균장 어닐링의 빠른 평형상태 도달과 유전자 알고리즘의 다양하고 강력한 연산자를 합성하여 최적화 문제를 효율적으로 해결하였다. 제안된 분산 MGA를 VLSI 설계에서 중요한 주제인 채널 배선문제에 적용하여 실험한 결과 기존의 GA를 단독으로 사용하였을 때보다 최적해에 빠르게 도달하였다. 또한 분산 알고리즘은 순차 알고리즘에서의 최적해 수렴 특성을 해치지 않으면서 문제의 크기에 대하여 선형적인 수행시간 단축을 나타냈다.
We propose a method of paramete estimation using order-of-magnitude analysis for optimal boundary smoothing in Mean Field Annealing(MFA) technique in this paper. We previously proposed two boundary smoothing methods for consistent object representation in the previous paper, one is using a constratined regulaization(CR) method and the other is using a MFA method. The CR method causes unnecessary smoothing effects at corners. On the other hand, the MFA method method smooths our the noise without losing sharpness of corners. The MFA algorithm is influenced by several parameters such as standard deviation of the noise, the relativemagnitude of prior ter, initial temperature and final temperature. We propose a general parameter esimation method for optimal boundary smoothing using order-of-magnitude analysis to be used for consistent object representation in this paper. In addition, we prove the effectiveness of our parameter estimation and also show the temperature parameter sensitivities of the algorithm.
3차원 물체 인식은 학습에 의해서 구성된 모델베이스를 이용하여 주어진 입력 영상에 존재하는 한 개 혹은 여러 개의 물체를 구별하는 과정이다. 본 논문에서는 입력 거리 정보를 받아들여 이 정보로부터 보이는 각 면에 대한 특징을 추출해낸 후 이 특징들을 입력 영상에 존재하는 물체를 묘사하는 특징으로 사용하여 이로부터 모델을 결정하는 방법을 제시한다. 영상 분할된 입력 물체는 그래프로 표현되는데, 물체 인식은 입력 물체의 그래프를 모델 베이스의 각 모델의 그래프와 정합하는 고정에서 얻어진다. 제한 조건은 만족시키는 정합을 수행하기 위하여 mean field annealing (MFA) 신경 회로망을 사용하였으며 가려진 물체 인식을 수행할 수 있는 정합을 위해 에너지 함수를 제안하였다. 제안한 알고리듬의 효용성을 입증하기 위하여 가려짐의 정도를 다르게 한 합성영상에 대해서 모의 실험을 하였다.
본 논문에서는 병렬처리에서 중요한 이슈인 부하균형 문제에 대한 새로운 솔루션을 소개한다. 솔루션으로 제안하는 MGA 기법은 평균장 어닐링 (MFA)과 유전자 알고리즘 (GA)의 장점을 효과적으로 결합한 휴리스틱 부하균형기법이다. 제안된 MGA을 다른 매핑 알고리즘 (MFA, GA-l, GA-2) 들과의 성능 향상비를 측정하는 멀티프로세서 매핑 시뮬레이션을 개발하였다. 휴리스틱 매핑 기법의 합성을 통하여 기존의 방법보다 수행시간은 오래 걸리는 대신 솔루션 품질, 즉 최대종료시간 및 통신부하에서 개선된 실험 결과를 얻을 수 있다는 것을 보였다.
The existing method s for curvature estimation have a common problem in determining a unique smoothong factor. we previously proposed two approaches to overcome that problem: a constrained regularization approach and a mean field annealing approach. We consistently detected corners from the perprocessed smooth boundary obtained by either the constrained eglarization approach or the mean field annealing approach. Moreover, we defined corner sharpness to increase the robustness of both approaches. We evaluate the performance of those methods proposed in this paper. In addition, we show some matching results using a two-dimensional Hopfield neural network in the presence of occlusion as a demonstration of the power of our proposed methods.
Karimi, Gholam Reza;Verki, Ahmad Azizi;Mirzakuchaki, Sattar
ETRI Journal
/
제32권6호
/
pp.932-939
/
2010
In this paper, a fast migration method is proposed. Our method executes local relocation on a model placement where an additional module is added to it for modification with a minimum number of displacements. This method is based on mean-field annealing (MFA), which produces a solution as reliable as a previously used method called simulated annealing. The proposed method requires substantially less time and hardware, and it is less sensitive to the initial and final temperatures. In addition, the solution runtime is mostly independent of the size and complexity of the input model placement. Our proposed MFA algorithm is optimized by enabling module rotation inside an energy function called permissible distances preservation energy. This, in turn, allows more options in moving the engaged modules. Finally, a three-phase cooling process governs the convergence of problem variables called neurons or spins.
수량화 문제는 n개의 성질을 갖는 m개의 개체들을 각 개체들의 유사도(similarity)를 가장 잘 반영하도록 p차원의 공간 상에 대응시키는 문제이다. 본 논문에서는 물리학에서의 열평형 상태(thermal equilibrium state)에서 분자시스템의 해석적 근사 움직임에 대한 이론인 평균장 이론(mean field theory)에 의한 분자의 평균 변화량 계산과 어닐링(annealing) 방법에 의한 평균장 신경회로망(mean field neural network)을 수량화 문제(quantification analysis problem)의 해결에 적용하였다. 그 결과, 제안한 최적화 응용기법 이 기존의 고유치 분석방법(eigen value analysis)에 비해 비용측면에서 좀 더 최적에 가까운 해답을 찾아낼 수 있음을 확인하였다.
We consider the Fuzzy clustering which is devised for partitioning a set of objects into a certain number of groups by assigning the membership probabilities to each object. The researches carried out in this field before show that the Fuzzy clustering concept is involved so much that for a certain set of data, the main purpose of the clustering cannot be attained as desired. Thus we propose a new objective function, named as Fuzzy-Entroppy Function in order to satisfy the main motivation of the clustering which is classifying the data clearly. Also we suggest Mean Field Annealing Algorithm as an optimization algorithm rather than the. ISODATA used traditionally in this field since the objective function is changed. We show the Mean Field Annealing Algorithm works pretty well not only for the new objective function but also for the classical Fuzzy objective function by indicating that the local minimum problem resulted from the ISODATA can be improved.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.