A Study on Optimization Approach for the Quantification Analysis Problem Using Neural Networks

신경회로망을 이용한 수량화 문제의 최적화 응용기법 연구

  • 이동명 (동명정보대학 컴퓨터공학과)
  • Published : 2006.01.01

Abstract

The quantification analysis problem is that how the m entities that have n characteristics can be linked to p-dimension space to reflect the similarity of each entity In this paper, the optimization approach for the quantification analysis problem using neural networks is suggested, and the performance is analyzed The computation of average variation volume by mean field theory that is analytical approximated mobility of a molecule system and the annealed mean field neural network approach are applied in this paper for solving the quantification analysis problem. As a result, the suggested approach by a mean field annealing neural network can obtain more optimal solution than the eigen value analysis approach in processing costs.

수량화 문제는 n개의 성질을 갖는 m개의 개체들을 각 개체들의 유사도(similarity)를 가장 잘 반영하도록 p차원의 공간 상에 대응시키는 문제이다. 본 논문에서는 물리학에서의 열평형 상태(thermal equilibrium state)에서 분자시스템의 해석적 근사 움직임에 대한 이론인 평균장 이론(mean field theory)에 의한 분자의 평균 변화량 계산과 어닐링(annealing) 방법에 의한 평균장 신경회로망(mean field neural network)을 수량화 문제(quantification analysis problem)의 해결에 적용하였다. 그 결과, 제안한 최적화 응용기법 이 기존의 고유치 분석방법(eigen value analysis)에 비해 비용측면에서 좀 더 최적에 가까운 해답을 찾아낼 수 있음을 확인하였다.

Keywords

References

  1. Hamm. L., Wade Brorsen and B. Hagan, 'Global optimization of neural network weights,' Proceedings of the 2002 International Joint Conference on Neural Networks, Vol. 2, pp.1228-1233, 2002
  2. Yamazaki. A., de Souto., M. C. P. and Ludermir. T. B., 'Optimization of neural network weights and architectures for odor recognition using simulated annealing,' Proceedings of the 2002 International Joint Conference on Neural Networks, Vol. 1, pp.547-552, 2002
  3. Rojas F., Alvarez M. R., Salmeron M., Puntonet C. G. and Martin-Clemente R, 'Adaptive and heuristic approaches for nonlinear source separation,' Proceedings of the 2003 International Joint Conference on Neural Networks, Vol. 1, pp.720-725, 2003
  4. Lei Cheng and Xiuwen Liu, 'Sparse linear representations for recognition,' Proceedings of the 2003 International Joint Conference on Neural Networks, Vol. 2, pp.1324-1327, 2003
  5. Liang, R. H. and Kang F. C., 'Thermal generating unit commitment using an extended mean field annealing neural network,' IEE Proceedings, Vol. 147, Issue 3, pp.164-170, 2000
  6. Rose J., Klebsch W. and Wolf J., 'Temperature measurement and equilibrium dynamics of simulated annealing placements,' Computer Aided Design of Integrated Circuits and Systems, IEEE Transactions on Vol. 9, Issue 3, pp.253-259, 1990 https://doi.org/10.1109/43.46801
  7. Randall S. Sexton, 'Optimization of Neural Networks : A comparative Analysis of de Genetic Algorithm and Simulated Annealing,' European Journal of Operational Research, Vol. 114, No. 3, pp.589-601, 1999 https://doi.org/10.1016/S0377-2217(98)00114-3
  8. Yao X., 'A new simulated annealing algorithm,' International Journal of Computer Mathematics, 56, pp.161-168, 1995 https://doi.org/10.1080/00207169508804397
  9. Kirkpatrick S., Gelatt. C. and Vecchi M., 'Optimization by Simulated Annealing,' Science 220, pp. 671-680, 1983 https://doi.org/10.1126/science.220.4598.671
  10. J. Hopfield, D. Tank, 'Neural' Computation of Decisions in Optimization Problems,' Bio. Cybern., 52, pp.141-152, 1985
  11. Van den Bout and Miller III, 'Graph Partitioning Using Annealed Neural Net-works,' IEEE Transactions on Neural Networks, 1(2), pp.192-203, 1990 https://doi.org/10.1109/72.80231
  12. Peterson C. and Hartman E., 'Explorations of the Mean Field Theory Learning Algorithm,' Neural Networks 2, pp.475-494, 1989 https://doi.org/10.1016/0893-6080(89)90045-2