• Title/Summary/Keyword: maxwell stress tensor

Search Result 62, Processing Time 0.028 seconds

Electromagnetic Force Calculation Using Magnetic Vector Potentials in 3-D Problems (자기벡터포텐셜을 이용한 3차원 전자력 계산)

  • 양재진;이복용;이기식
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.2
    • /
    • pp.106-111
    • /
    • 1996
  • Electric machines such as motors which have rmving parts are designed for producing mechanical force or torque. The accurate calculations of electromagnetic force and torque are important in the design these machines. Electromagnetic force calculation method using the results of Finite Element Method(FEM) has been presented variously in 2-D problems. Typically the Maxwell's Stress Tensor method and the method of virtual work are used. The former calculates forces by integrating the surface force densities which can be expressed in terms of Maxwell Stress Tensor(MST), and the latter by differentiating the electromagnetic energy with respect to the virtual dis¬placement of rigid bodies of interest. In the problems including current source, magnetic vector potentials(MVP) have rmstly been used as unknown variables for field analysis by a numerical method; e. g. FEM. This paper, thus, introduces the two both methods using MVP in 3-D case. To verify the usefulness of presented methods, a solenoid model is chosen and analyzed by 3-D and axisymmetric FEM. It is found that the force calculation results are in good agreement for several mesh schemes.

  • PDF

Analysis of Coaxial Magnetic Gear with Low Gear Ratios for Application in Counter Rotating Systems

  • Shin, H.M.;Chang, J.H.
    • Journal of Magnetics
    • /
    • v.20 no.2
    • /
    • pp.186-192
    • /
    • 2015
  • This paper describes the electromagnetic and mechanical characteristics of coaxial magnetic gear (CMG) with a low gear ratio. The analysis models are restricted to a CMG with a gear ratio of less than 2. The electromagnetic characteristics including transmitted torque and iron losses are presented according to the variation of the gear ratio. The pole pairs of high speed rotor are chosen as 6, 8 and 10 by considering the torque capability. As the gear ratio approaches 1, both iron losses on the ferromagnetic materials and eddy current losses on the rotor permanent magnets are increased. The radial and tangential forces on the modulating pieces are calculated using the Maxwell stress tensor. When the maximum force is exerted on the modulating pieces, the mechanical characteristics including stress and deformation are derived by structural analysis. In CMG models with a low gear ratio, the maximum radial force acting on modulating pieces is larger than that in CMG models with a high gear ratio, and the normal stress and normal deformation are increased in a CMG with a low gear ratio. Therefore, modulating pieces should be designed to withstand larger radial forces in CMG with a low gear ratio compared to CMG with a high gear ratio.

Calculations of the Trapping Force of Optical Tweezers using FDTD Method (FDTD 방법을 이용한 광집게의 포획 힘 계산)

  • Sung, Seung-Yong;Lee, Yong-Gu
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.1
    • /
    • pp.80-83
    • /
    • 2008
  • Optical tweezers are a tool that can use a tightly focused laser beam to trap and manipulate micron-sized dielectric particles that are immersed in a medium with lower refractive index. In this paper, the calculation of the trapping force of optical tweezers is presented. A nonparaxial Gaussian beam is used to represent a tightly focused Gaussian beam, and the FDTD (Finite-Difference Time-Domain) method is used for computing the electromagnetic field distributions in the dielectric medium. Scattered-field formulation is used for analytical expression of the incident fields. Using the electromagnetic field distribution from FDTD simulation, the trapping force is calculated based on Maxwell's stress tensor.

enerator During the State of Torsional Interaction (비틀림 상오작용 상태에 있는 터어보 발전기의 전기적 특성)

  • Lee, Eun-Ung
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.1
    • /
    • pp.10-17
    • /
    • 1988
  • The torsional resonance of the generator shaft system has the possibility of inducing voltages across the stator winding because it is a carrier with the field excitation. And these torsional induced stator currents inducs the eddy current in the rotor. This paper describes the eddy current based on the double Fourier series method. The forces generating during the torsional interaction are computed using the Maxwell's magnetic stress tensor for each of the Fouriercomponennts. And then, these forces of the Fourier components are evaluated by the Parseval's theorem.

  • PDF

An Adaptive Finite Element Method for Magnetostatic Force Computations (정자력 계산을 위한 적응 유한 요소법)

  • 박용규;박일한;정형석;정현교;이기식;한송엽
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.2
    • /
    • pp.100-105
    • /
    • 1989
  • This paper presents an adaptive finite element method for magnetostatic force computation using Maxwell's stress tensor. Mesh refinements are performed automatically by interelement magnetic field intensity discontinuity errors and element force errors. In initial mesh, the computed forces for different integration paths give great differences, but converge to a certain value as mesh division is performed by the adaptive scheme, We obtained good agreement between analytic solutions and numerical values in typical examples.

  • PDF

Electromechanical Simulation of Cellulose Based Biomimetic Electro-Active Paper (생체모방종이작동기(Electro-Active Paper)의 전기기계적인 구동 시뮬레이션)

  • Jang, Sang-Dong;Kim, Heung-Soo;Kim, Jae-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.73-76
    • /
    • 2007
  • Electro-Active paper (EAPap) is a new smart material that has a potential to be used in biomimetic actuator and sensor. It is made by cellulose that is abundant material in nature. EAPap is fascinating with its biodegradability, lightweight, large displacement, high mechanical strength and low actuation voltage. Actuating mechanism of EAPap is known to be the combined effects of ion migration and piezoelectricity. However, the electromechanical actuation mechanisms are not yet to be established. This paper presents the modeling of the actuation behavior of water infused cellulose samples and their composite dielectric constants calculated by Maxwell-Wagner theory. Electro-mechanical forces were calculated using Maxwell stress tensor method. Bending deflection was evaluated from simple beam model and compared with experimental observation, which result good correlation with each other.

  • PDF

Electromechanical Simulation of Cellulose Based Biomimetic Electro-Active Paper (생체모방 종이작동기(electro-active paper)의 전기기계적인 구동 시뮬레이션)

  • Jang, Sang-Dong;Kim, Jae-Hwan;Kim, Heung-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1179-1183
    • /
    • 2007
  • Electro-Active paper(EAPap) is a new smart material that has a potential to be used in biomimetic actuator and sensor. It is made by cellulose that is abundant material in nature. EAPap is fascinating with its biodegradability, lightweight, large displacement, high mechanical strength and low actuation voltage. Actuating mechanism of EAPap is known to be the combined effects of ion migration and piezoelectricity. However, the electromechanical actuation mechanisms are not yet to be established. This paper presents the modeling of the actuation behavior of water infused cellulose samples and their composite dielectric constants calculated by Maxwell-Wagner theory. Electro-mechanical forces were calculated using Maxwell stress tensor method. Bending deflection was evaluated from simple beam model and compared with experimental observation, and which result in good correlation with each other.

Finite Element Analysis of Electromechanical Field of a Spindle Motor in a Computer Hard Disk Drive Considering Speed Control Using PWM and Mechanical Flexibility (PWM에 의한 속도 제어와 유연 구조를 고려한 컴퓨터 하드디스크 드라이브용 스핀들 모터의 기전 연성 유한 요소 해석)

  • Jang, Jeong-Hwan;Jang, Geon-Hui
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.9
    • /
    • pp.499-508
    • /
    • 2002
  • This paper presents a finite element analysis of the electromechanical field in the spindle motor of a computer hard disk drive considering the speed control and mechanical flexibility. The driving circuit equation is modified by considering the switching action of PWM inverter, and is coupled with the Maxwell equation to obtain the nonlinear time-stepping finite element equation for the analysis of magnetic field. Magnetic force and torque are calculated by the Maxwell stress tensor. Mechanical motion of a rotor is determined by a time-stopping finite element method considering the flexibility of shaft, rotor and bearing. Both magnetic and mechanical finite element equations are combined in the closed loop to control the speed using PWM. Simulation results are verified by the experiments, and they are in food agreement with the experimental results.

Easy function for solving linear elasticity problems

  • Rezaiee-Pajand, Mohammad;Karimipour, Arash
    • Structural Engineering and Mechanics
    • /
    • v.81 no.3
    • /
    • pp.335-348
    • /
    • 2022
  • It is well known that after finding the displacement in the structural mechanics, strain and stress can be obtained in the straight-forward process. The main purpose of this paper is to unify the displacement functions for solving the solid body. By performing mathematical operations, three sets of these key relationships are found in this paper. All of them are written in the Cartesian Coordinates and in terms of a simple function. Both analytical and numerical approaches are utilized to validate the correctness of the presented formulations. Since all required conditions for the bodies with self-equilibrated loadings are satisfied accurately, the authors' relations can solve these kinds of problems. This fact is studied in-depth by solving some numerical examples. It is found that a very simple function can be used for each formulation instead of ten different and complex displacement potentials defined by previous studies.

DIRECT NUMERICAL SIMULATION OF MAGNETIC CHAINS IN SIMPLE SHEAR FLOW (전단유동에서 자성사슬의 거동에 대한 직접수치해석)

  • Kang, T.G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.88-92
    • /
    • 2009
  • When exposed to uniform magnetic fields externally applied, paramagnetic particles acquire dipole moments and the induced moments interacting with each other lead to the formation of chainlike structures or clusters of particles aligned with the field direction. A direct simulation method, based on the Maxwell stress tensor and a fictitious domain method, is applied to solve flows with magnetic chains in simple shear flow. We assumed that the particles constituting the chains are paramagnetic, and inertia of both flow and magnetic particles is negligible. The numerical scheme enables us to take into account both hydrodynamic and magnetic interactions between particles in a fully coupled manner, enabling us to numerically visualize breakup and reformation of the chains by the combined effect of the external field and the shear flow. Simple shear flow with suspended magnetic chains is solved in a periodic domain for a given magnetic field. Dynamics of interacting magnetic chains is found to be significantly affected by a dimensionless parameter called the Mason number, the ratio of the viscous force to the magnetic force in the shear flow. The effect of particle area fraction on the chain dynamics is investigated as well.

  • PDF