• Title/Summary/Keyword: maximum norm error estimates

Search Result 5, Processing Time 0.018 seconds

$L^{\infty}$-CONVERGENCE OF MIXED FINITE ELEMENT METHOD FOR LAPLACIAN OPERATOR

  • Chen, Huan-Zhen;Jiang, Zi-Wen
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.1
    • /
    • pp.61-82
    • /
    • 2000
  • In this paper two so-called regularized Green's functions are introduced to derive the optimal maximum norm error estimates for the unknown function and the adjoint vector-valued function for mixed finite element methods of Laplacian operator. One contribution of the paper is a demonstration of how the boundedness of $L^1$-norm estimate for the second Green's function ${\lambda}_2$ and the optimal maximum norm error estimate for the adjoint vector-valued function are proved. These results are seemed to be to be new in the literature of the mixed finite element methods.

MAX-NORM ERROR ESTIMATES FOR FINITE ELEMENT METHODS FOR NONLINEAR SOBOLEV EQUATIONS

  • CHOU, SO-HSIANG;LI, QIAN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.5 no.2
    • /
    • pp.25-37
    • /
    • 2001
  • We consider the finite element method applied to nonlinear Sobolev equation with smooth data and demonstrate for arbitrary order ($k{\geq}2$) finite element spaces the optimal rate of convergence in $L_{\infty}\;W^{1,{\infty}}({\Omega})$ and $L_{\infty}(L_{\infty}({\Omega}))$ (quasi-optimal for k = 1). In other words, the nonlinear Sobolev equation can be approximated equally well as its linear counterpart. Furthermore, we also obtain superconvergence results in $L_{\infty}(W^{1,{\infty}}({\Omega}))$ for the difference between the approximate solution and the generalized elliptic projection of the exact solution.

  • PDF

Inversion of Geophysical Data with Robust Estimation (로버스트추정에 의한 지구물리자료의 역산)

  • Kim, Hee Joon
    • Economic and Environmental Geology
    • /
    • v.28 no.4
    • /
    • pp.433-438
    • /
    • 1995
  • The most popular minimization method is based on the least-squares criterion, which uses the $L_2$ norm to quantify the misfit between observed and synthetic data. The solution of the least-squares problem is the maximum likelihood point of a probability density containing data with Gaussian uncertainties. The distribution of errors in the geophysical data is, however, seldom Gaussian. Using the $L_2$ norm, large and sparsely distributed errors adversely affect the solution, and the estimated model parameters may even be completely unphysical. On the other hand, the least-absolute-deviation optimization, which is based on the $L_1$ norm, has much more robust statistical properties in the presence of noise. The solution of the $L_1$ problem is the maximum likelihood point of a probability density containing data with longer-tailed errors than the Gaussian distribution. Thus, the $L_1$ norm gives more reliable estimates when a small number of large errors contaminate the data. The effect of outliers is further reduced by M-fitting method with Cauchy error criterion, which can be performed by iteratively reweighted least-squares method.

  • PDF

NUMERICAL METHOD FOR A SYSTEM OF SINGULARLY PERTURBED CONVECTION DIFFUSION EQUATIONS WITH INTEGRAL BOUNDARY CONDITIONS

  • Raja, Velusamy;Tamilselvan, Ayyadurai
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.1015-1027
    • /
    • 2019
  • A class of systems of singularly perturbed convection diffusion type equations with integral boundary conditions is considered. A numerical method based on a finite difference scheme on a Shishkin mesh is presented. The suggested method is of almost first order convergence. An error estimate is derived in the discrete maximum norm. Numerical examples are presented to validate the theoretical estimates.

An optimal regularization for structural parameter estimation from modal response

  • Pothisiri, Thanyawat
    • Structural Engineering and Mechanics
    • /
    • v.22 no.4
    • /
    • pp.401-418
    • /
    • 2006
  • Solutions to the problems of structural parameter estimation from modal response using leastsquares minimization of force or displacement residuals are generally sensitive to noise in the response measurements. The sensitivity of the parameter estimates is governed by the physical characteristics of the structure and certain features of the noisy measurements. It has been shown that the regularization method can be used to reduce effects of the measurement noise on the estimation error through adding a regularization function to the parameter estimation objective function. In this paper, we adopt the regularization function as the Euclidean norm of the difference between the values of the currently estimated parameters and the a priori parameter estimates. The effect of the regularization function on the outcome of parameter estimation is determined by a regularization factor. Based on a singular value decomposition of the sensitivity matrix of the structural response, it is shown that the optimal regularization factor is obtained by using the maximum singular value of the sensitivity matrix. This selection exhibits the condition where the effect of the a priori estimates on the solutions to the parameter estimation problem is minimal. The performance of the proposed algorithm is investigated in comparison with certain algorithms selected from the literature by using a numerical example.