• Title/Summary/Keyword: maximum displacement

Search Result 1,623, Processing Time 0.041 seconds

Experimental Evaluation of the Flexural Behavior of SY Permanent Steel Form for RC Beam and Girder (SY 비탈형 보 거푸집의 휨 거동에 대한 실험적 고찰)

  • Bae, Kyu-Woong;Boo, Yoon-Seob;Shin, Sang-Min
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.1
    • /
    • pp.11-21
    • /
    • 2022
  • Currently, in the domestic construction industry, the free web method has been emerging as a potential solution to the shortage of skilled workers due to the prolonged COVID-19 crisis, as it helps in securing economic feasibility through shortening the construction period and reducing labor costs. To consider one part of the construction method, in this study, the bending behavior according to the load was evaluated for the SY slope-type beam formwork, which was manufactured at a factory, assembled with rebar, brought into the site, and then poured into the site. For the SY Beam standard cross-sectional shape, a cross-sectional dimensional width of 400mm and depth 600mm determined through structural modeling using the MIDAS GEN program were applied. A total of 6 specimens were made with a member length of 5,000mm, 5 specimens and one RC specimen in the comparison group were manufactured in real-size format using the thickness of the steel plate(0.8, 1.0, 1.2mm) as a variable, and bending experiments were performed. In the bending test, the steel plate deck showed high initial stiffness and maximum strength as it yielded, which showed that it sufficiently contributed to the flexural strength. It is judged that additional analysis and experimental studies for 1.05, 1.1, and 1.15mm are needed to derive the appropriate steel plate thickness and the method for calculating the tensile force contribution of the steel plate to secure the manufacturing, construction and economic feasibility of SY Beam in the future.

Effects of Acute Transcranial Direct Current Stimulation on Muscle Endurance of the Lower Extremities for Young Healthy Adults (일회성 경두개 직류전기자극(tDCS) 적용이 젊은 성인의 하지 근지구력에 미치는 영향)

  • Park, Shin-Young;Ko, Do-Kyung;Jeong, Hyeong Do;Lee, Hanall;Lee, Hyungwoo;Kim, Chanki;An, Seungho;Kim, Jiyoung;Moon, Bosung;Son, Jee-Soo;Lee, Dohyeon;Lee, Eui-Young;Lee, Ju Hak;Im, Seungbin;Tan, Yuan;Jeon, Kyoungkyu;Kang, Nyeonju
    • Korean Journal of Applied Biomechanics
    • /
    • v.32 no.3
    • /
    • pp.94-102
    • /
    • 2022
  • Objective: The purpose of this study was to investigate the effect of acute transcranial direct current stimulation (tDCS) on the isokinetic muscular endurance of the lower extremity for young adults. Method: Thirteen young adults performed isokinetic fatigue tasks for two experimental conditions including real tDCS and sham stimulation protocols. Before and after the task, the tensiomyography was used for evaluating muscle contraction characteristics of vastus medialis and semitendinosus. Paired t-test was performed to compare the fatigue index, changes in maximum radial displacement (∆Dm), delay time (∆Tc), and velocity of contraction (∆Vc) between tDCS conditions. Results: We found no significant differences in the fatigue index between real and sham conditions. In addition, the analyses identified no significant different values of ∆Dm, ∆Tc, and ∆Vc in the vastus medialis and semitendinosus between real and sham conditions. Conclusion: These findings suggest that the tDCS protocols may have no acute effect on lower limb muscle endurance for young adults. Future studies should consider the long-term effects of repetitive tDCS sessions, various stimulation positions, exercise tasks, and participant characteristics to more clearly understand the effect of tDCS on muscle endurance of lower extremities.

Effect of Repeated Wet/Dry Cycles of Salt Solution on Flexural Performance of Steel Fiber Reinforced Concrete (반복적 염수침지가 강섬유 혼입 콘크리트의 휨성능에 미치는 영향)

  • Kim, Ji-Hyun;Choi, Yu-Jin;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.553-564
    • /
    • 2022
  • Concrete is a representative composite material that shows excellent performance in the construction field. However, it is a brittle and nonhomogeneous material and exhibits weak behavior against bending and tensile forces. To compensate for such weakens, fiber reinforcement has been utilized, and steel fiber has been recognized as one of the best material for such purpose. However, steel fiber can seriously affect the durability of concrete exposed to the marine environment due to the corrosion caused by chlorine ions. This study intended to evaluate the mechanical performance of steel fiber reinforce concrete during and after repeated wet/dry cycles in salt solution. According to the experimental results, there was no reduction in the relative dynamic modulus of concrete during the repeated wet/dry cycles in salt solution for 37 weeks. Flexural strength was not decreased after completion of repeated wet/dry cycles in salt solution. There was no sign of corrosion in steel fibers after visual observation of fractured surface. However, the flexural toughness was decreased, and this is because about half of the concrete specimen showed failure before reaching the maximum displacement of 3 mm. Although repeated wet/dry cycles in salt solution did not cause cracks in concrete through corrosion of steel fibers, specific attention is required because it can reduce flexural toughness of steel fiber reinforced concrete.

Cause Analysis for Sleeper Damage of Sleeper Floating Track in Urban Transit (도시철도 침목플로팅궤도의 침목손상 원인 분석)

  • Choi, Jung-Youl;Shin, Hwang-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.667-674
    • /
    • 2022
  • In this study, the correlation between the damage type and operating conditions of the sleepers was analyzed based on the design data and visual inspection results for the concrete sleepers of the sleeper floating track (STEDEF) that have been in operation for more than 20 years. It appeared in the form of cracks, breakages, and breaks in the concrete at the center and tie bar contact and buried areas. As a result of the numerical analysis, it was analyzed that the change in the left and right spring stiffness of the sleeper resilience pad increases the maximum stress, tensile stress, compressive stress, and displacement of the concrete sleeper, and stress concentration in the concrete at the tie bar contact area. It was proved analytically that the sleeper resilience pad can affect the damage of the concrete sleeper. Therefore, damage of concrete sleepers in the sleeper floating track in urban transit could be caused by changes in spring stiffness of sleeper resilience pads. It was reviewed that preventive maintenance such as improvement and timely replacement of sleeper resilience pads was necessary.

Numerical Analysis for Dynamic Behavioral Characteristics of Submerged Floating Tunnel according to Shore Connection Designs (지반 접속부 설계에 따른 수중터널의 동적 거동 특성에 대한 수치해석적 연구)

  • Seok-Jun, Kang;Joohyun, Park;Gye-Chun, Cho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.1
    • /
    • pp.27-41
    • /
    • 2023
  • Submerged floating tunnels must be connected to the ground to connect continents. The displacement imbalance at the shore connection between the underground bored tunnel and submerged floating tunnel can cause stress concentration, accompanying a fracture at the shore connection. The elastic joint has been proposed as a method to relive the stress concentration, however, the effect of the elastic joints on the dynamic behavior should be evaluated. In this study, the submerged floating tunnel and shore connection under dynamic load conditions were simulated through numerical analysis using a numerical model verified through a small-scaled physical model test. The resonant frequency was considered as a dynamic behavioral characteristic of the tunnel under the impact load, and it was confirmed that the stiffness of the elastic joint and the resonant frequency exhibit a power function relationship. When the shore connection is designed with a soft joint, the resonant frequency of the tunnel is reduced, which not only increases the risk of resonance in the marine environment where a dynamic load of low frequency is applied, but also greatly increases the maximum velocity of tunnel when resonance occurs.

A Study on the Optimal Location of the Inclinometer and Strain Gauge in Small-Scale Underground Excavation (소규모 지하굴착에서 지중경사계와 변형률계의 최적 위치 선정에 대한 연구)

  • Gichun Kang;Jinuk Park;Byeongjin Roh;Jiahao Sun;Seong-Kyu Yun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.2
    • /
    • pp.23-33
    • /
    • 2023
  • Currently, there are cases in Korea where economic damage has occurred due to the ambiguity instrument installation and operation standards in the construction of temporary earth retaining wall, failing to prevent collapse of temporary earth retaining wall at the construction site in advance. Therefore, in this study, a numerical analysis was conducted to find the appropriate installation location of the inclinometer and strain gauge among the installed instruments shown in the design drawing of the temporary earth retaining wall. As a results, It was found that the installation position of the underground inclinometer is the corner of the retaining wall in the case of plane-deformation analysis, and the most displacement occurs in the center of the excavation surface in the case of 3D analysis. When the stress and moment are comprehensively analyzed, the corner is judged to be a vulnerable point. In the case of the strain gauge, In plane-deformation analysis and 3D analysis, the maximum bending stress occurred at the wale connection where the end of the strut and the counter strut are in contact. At this point, it is analyzed that it is necessary to focus on installing and managing the connection to prevent accidents from being vulnerable.

A Study on Earth Pressure Properties of Granulated Blast Furnace Slag Used as Back-fill Material (뒷채움재로 이용한 고로 수쇄슬래그의 토압특성에 관한 실험적 연구)

  • Baek, Won-Jin;Lee, Kang-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.8
    • /
    • pp.119-127
    • /
    • 2006
  • Granulated Blast Furnace Slag (GBFS) is produced in the manufacture process of pig-iron and shows a similar particle formation to that of natural sea sand and also shows light weight, high shear strength, well permeability, and especially has a latent hydraulic property by which GBFS is solidified with time. Therefore, when GBFS is used as a backfill material of quay or retaining walls, the increase of shear strength induced by the hardening is presumed to reduce the earth pressure and consequently the construction cost of harbor structures decreases. In this study, using the model sand box (50 cm$\times$50 cm$\times$100 cm), the model wall tests were carried out on GBFS and Toyoura standard sand, in which the resultant earth pressure, a wall friction and the earth pressure distribution at the movable wall surface were measured. In the tests, the relative density was set as Dr=25, 55 and 70% and the wall was rotated at the bottom to the active earth pressure side and followed by the passive side. The maximum horizontal displacement at the top of the wall was set as ${\pm}2mm$. By these model test results, it is clarified that the resultant earth pressure obtained by using GBFS is smaller than that of Toyoura sand, especially in the active-earth pressure.

A Study on the Lateral Behavior of Pile-Bent Structures with $P-{\Delta}$ Effect ($P-{\Delta}$ 효과를 고려한 Pile-Bent 구조물의 수평거동 연구)

  • Jeong, Sang-Seom;Kwak, Dong-Ok;Ahn, Sang-Yong;Lee, Joon-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.8
    • /
    • pp.77-88
    • /
    • 2006
  • In this study, the lateral behavior of Pile-Bent structures subjected to lateral loading was evaluated by a load-transfer approach. An analytical method based on the Beam-Column model and nonlinear load transfer curve method was proposed to consider material non-linearity (elastic and yielding) and $P-{\Delta}$ effect. Special attention was given to the lateral deflection of Pile-Bent structures depending on different soil properties, lateral load, slenderness ratio based on pier length and reinforcing effect of casing. From the results of the parametric study, it is shown that the increase of lateral displacement in a pile is much less favorable for an inelastic analysis than for an elastic analysis. It is found that for inelastic analysis, the maximum bending moment is located within a depth approximately 3.5D(D: pile diameter) below ground surface, but within 1.5D when $P-{\Delta}$ effect is considered. It is also found that the magnitude and distribution of the lateral deflections and bending moments on a pile are highly influenced by the inelastic analysis and $P-{\Delta}$ effect, let alone soil properties around an embedded pile.

Seismic Performance Evaluation on Bending Deformation of 2-Ply and 3-Ply Bellows Expansion Pipe Joints (2겹 및 3겹 벨로우즈 신축배관이음의 휨 변형에 대한 내진성능평가 )

  • Sung-Wan Kim;Sung-Jin Chang;Dong-Uk Park;Bub-Gyu Jeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.2
    • /
    • pp.33-41
    • /
    • 2023
  • The application of seismic separation joints that can improve the deformation capacity of piping is an effective way to improve seismic performance. Seismic separation joints capable of axial expansion and bending deformation are installed where deformation is expected and used for the purpose of safely protecting the piping. Bellows are flexible and have low stiffness, so they can be used as seismic separation joints because they have excellent ability to respond to relatively large deformation. In this study, the seismic performance and limit state for bending deformation of 2-ply and 3-ply bellows specimens were evaluated. Seismic performance was evaluated by applying an increasing cyclic load to consider low-cycle fatigue due to seismic load. In order to confirm the margin for the limit state of the evaluated seismic performance, an experiment was conducted in which a cyclic loading of constant amplitude was applied. As a result of the experiment, it was confirmed that the bellows specimen was made of stainless steel and had a high elongation, so that the 2-ply bellows specimen had the limit performance of resisting within 3 cycles even at the maximum forced displacement of the 3-ply bellows specimen.

Shaking table tests of prestressed damping-isolation units using a spring and rubbers

  • Yang, Keun-Hyeok;Mun, Ju-Hyun;Im, Chae-Rim;Won, Eun-Bee
    • Earthquakes and Structures
    • /
    • v.23 no.4
    • /
    • pp.373-384
    • /
    • 2022
  • To improve the seismic performance of suspended ceiling structures, various vibration-damping devices have been developed. However, the devices made of metals have a limit in that they cause large deformation and seriously damages the exterior of the suspended ceiling structure from the wall. As a results, their strengthening effect of the suspended ceiling structure was minimal. Thus, this study employed a spring and vibration-proof rubber effectively controlled vibrations without increasing horizontal seismic loads on the ceiling to enhance the seismic resistance of suspended ceiling structures. The objective of the study is to examine the dynamic properties of a seismic damping-isolation unit (SDI) with various details developed. The developed SDI was composed of a spring, embossed rubbers, and prestressed bolts, which were the main factors enhancing the damping effect. The shaking table tests were performed on eight SDI specimens produced with the number of layers of embossed rubber (ns), presence or absence of a spring, prestressed force magnitude introduced in bolts (fps), and mass weight (Wm) as the main parameters. To identify the enhancement effect of the SDI, the dynamic properties of the control specimen with a conventional hanger bolt were compared to those of the SDI specimens. The SDI specimens were effective in reducing the maximum acceleration (Ac max), acceleration amplification factor (αp), relative displacement (δR), and increasing the damping ratio (ξ) when compared to the control specimen. The Ac max, αp, and δR of the SDI specimens with two rubbers, spring, and fps of 0.1fby, where fby is the yielding strength of the screw bolt were 57.8%, 58.0%, and 61.9% lower than those of the conventional hanger bolt specimens, respectively, resulting in the highest ξ (=0.127). In addition, the αp of the SDI specimens was 50.8% lower than those specified in ASCE 7 and FEMA 356. Consequently, to accurately estimate the αp of the SDI specimens, a simple model was proposed based on the functions of fps, stiffness constant of the spring (K), Wm, and ns.