• Title/Summary/Keyword: maximum cell density

Search Result 428, Processing Time 0.023 seconds

Improved Electricity Generation by a Microbial Fuel Cell after Pretreatment of Ammonium and Nitrate in Livestock Wastewater with Microbubbles and a Catalyst

  • Jang, Jae Kyung;Kim, Taeyoung;Kang, Sukwon;Sung, Je Hoon;Kang, Youn Koo;Kim, Young Hwa
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.11
    • /
    • pp.1965-1971
    • /
    • 2016
  • Livestock wastewater containing high concentrations of ammonium and nitrate ions was pretreated with microbubbles and an Fe/MgO catalyst prior to its application in microbial fuel cells because high ion concentrations can interfere with current generation. Therefore, tests were designed to ascertain the effect of pretreatment on current generation. In initial tests, the optimal amount of catalyst was found to be 300 g/l. When 1,000 ml/min $O_2$ was used as the oxidant, the removal of ammonium- and nitrate-nitrogen was highest. After the operating parameters were optimized, the removal of ammonium and nitrate ions was quantified. The maximum ammonium removal was 32.8%, and nitrate was removed by up to 75.8% at a 500 g/l catalyst concentration over the course of the 2 h reaction time. The current was about 0.5 mA when livestock wastewater was used without pretreatment, whereas the current increased to $2.14{\pm}0.08mA$ when livestock wastewater was pretreated with the method described above. This finding demonstrates that a 4-fold increase in the current can be achieved when using pretreated livestock wastewater. The maximum power density and current density performance were $10.3W/m^3$ and $67.5W/m^3$, respectively, during the evaluation of the microbial fuel cells driven by pretreated livestock wastewater.

Improved Optimization of Indirubin Production from Bioreactor Culture of Polygonum tinctorium

  • Chung, Choong Sik;Kim, Kyung Il;Bae, Geun Won;Lee, Youn Hyung;Lee, Hyong Joo;Chae, Young Am;Chung, In Sik
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.2
    • /
    • pp.109-111
    • /
    • 2000
  • Effect of the two-stage operation and cell concentration on indirubin production was investigated using bioreactor culture of Polygonum tinctorium. Two-stage culture was operated successfully for 110 days without any adverse effects on continuous indirubin production. Maximum indirubin concentration was found to be at 80 mg/bioreactor. Initial cell concentration significantly affected indirubin production. The indirubin production at 29.2% PCV was improved by 845%, compared to that at 5% PCV. For high-density bioreactor culture of P. tinctorium, a maximum production rate of 10.2 mg indirubin/L day was obtained. Indirubin recovery for bioreactor operation was also examined using XAD-2, XAD-4, XAD-7, and solid silicon. XAD-4 was 1.6-fold more effective than that for solid silicon in indirubin recovery.

  • PDF

Handover based on Maximum Cell Residence Time and Adaptive TTT for LTE-R High-Speed Railways

  • Cho, Hanbyeog;Han, Donghyuk;Shin, Sungjin;Cho, Hyoungjun;Lee, Changsung;Lim, Goeun;Kang, Mingoo;Chung, Jong-Moon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.8
    • /
    • pp.4061-4076
    • /
    • 2017
  • With the development of high-speed railway technologies, train velocities can now reach speeds up to 350 km/h, and higher in the future. In high-speed railway systems (HSRs), loss of communication can result in serious accidents, especially when the train is controlled through wireless communications. For to this reason, operators of Long Term Evolution for Railway (LTE-R) communication systems install eNodeBs (eNBs) with high density to achieve highly reliable communications. However, densely located eNBs can result in unnecessary frequent handovers (HOs) resulting in instability because, during every HO process, there is a period of time in which the communication link is disconnected. To solve this problem, in this paper, an HO scheme based on the maximum cell residence time (CRT) and adaptive time to trigger (aTTT), which are collectively called CaT, is proposed to reduce unnecessary HOs (using CRT estimations) and decrease HO failures by improving the handover command transmission point (HCTP) in LTE-R HSR communications.

Production and Characterization of Phenylalanine Ammonia-lyase from Rhodotorula aurantiaca K-505

  • Cho, Dae-Haeng;Chae, Hee-Jeong;Kim, Eui-Yong
    • Preventive Nutrition and Food Science
    • /
    • v.2 no.4
    • /
    • pp.354-359
    • /
    • 1997
  • Optimal cultivation conditions for the production of phenylalanine ammonia-lyase(PAL) from Rhodotorula aurantiaca K-505 were selected, and the kinetic parameters of the produced PAL were determined. The most suitable carbon and nitrogen sources were glucose and tryptone, respectively. The strain expressed PAL constituttively when using the optimized semi-complex media. High cell density culture could be critical for maximal production of PAl since the PAL ynthesis was growth associated. maximum PAL activity was observed at initial pH 6.0. although the ll growth was not markedly affected by temperature between 22 and 28$^{\circ}C$, the cells yielded the maximum PAL activity when cultivated at 22$^{\circ}C$. The maximum activity for deamination of L-phenylalnine to trans-cinnamic acid was observed around pH 8.8. The PAL activity gave the maximum at 45$^{\circ}C$, and greatly decreased at higher than 5$0^{\circ}C$. Activation energy({TEX}$E_{a}${/TEX}) calculated from Arrhenius equation was 6.28 kcal/mol in the range of 22$^{\circ}C$ to 4$0^{\circ}C$. A oolf plot showed that the enzyme reaction follows Michaelis-Menten equation, whose {TEX}$K_{M}${/TEX} and {TEX}$V_{max}${/TEX} values were 4.65$\times${TEX}$10^{-3}${/TEX} M and 0.89$\mu$ mol/mg-min respectively.

  • PDF

Effect of substrate concentration on the operating characteristics of microbial electrolysis cells (기질 농도에 따른 미생물전기분해전지의 운전 특성)

  • Hwijin Seo;Jaeil Kim;Seo Jin Ki;Yongtae Ahn
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.4
    • /
    • pp.41-49
    • /
    • 2023
  • This study examined the effect of input substrate concentration on hydrogen production of microbial electrolysis cells. To compare the performance of MEC according to the input substrate concentration, six laboratory-scale MEC reactors were operated by sequentially increasing the input substrate concentration from 2 g/L of sodium acetate, to 4 g/L, and 6 g/L. The current density, hydrogen production, and SCOD removal rate were analyzed, and energy efficiency and cathodic hydrogen recovery were calculated to compare the performance of MEC. The maximum volumetric current density was obtained at 4 g/L condition (76.3 A/m3) and it decreased to 19.0 A/m3, when the input concentration was increased to 6 g/L, which was a 75% decrease compared to the 4 g/L input condition. Maximum hydrogen production was obtained also at 4 g/L condition (47.3 ± 16.8 mL), but maximum hydrogen yield was obtained at 2 g/L input condition (1.1 L H2/g CODin). Energy efficiencies were also highest in 2 g/L condition; the lowest result was observed at 6 g/L condition. Maximum electrical energy efficiency was 76.4%, and the maximum overall energy efficiency was 39.7% at 2 g/L condition. However, when the substrate concentration increased to 6 g/L, the performance was drastically decreased. Cathodic hydrogen recovery also showed a similar tendency with energy efficiency, with the lowest concentration condition showing the best performance. It can be concluded that operating at low input substrate concentration might be better when considering not only hydrogen yield but also energy efficiency.

Maximum Likelihood Estimation of Multinomial Parameters with Known or Unknown Crossing Point

  • Lee, Ju-Young;Oh, Myongsik
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.3
    • /
    • pp.947-956
    • /
    • 1999
  • We define a crossing point $x_0$ such that f(x)$\geq$g(x) for x$\leq$$x_0$ and f(x)$\leq$g(x) for x>$x_0$ where f and g are probability density functions. We may encounter suchy situation when we compare two histograms from two independent observations. For example two contingency tables where initially admitted students and actually enrolled students are classified according to their high school ranking may show such situation, In this paper we consider maximum likelihood estimation of cell probabilities when a crossing point exists, We first assume a known crossing point and find an estimator. The estimation procedure for the case of unknown crossing point is just a straightforward extension. A real data is analyzed for an illustrative purpose.

  • PDF

An Alternative Approach to the Traditional Mixotrophic Cultures of Haematococcus pluvialis Flotow (Chlorophyceae)

  • Goksan, Tolga;Ak, lknur;Gokpinar, Sevket
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.9
    • /
    • pp.1276-1282
    • /
    • 2010
  • In traditional mixotrophic cultures of microalgae, all the inorganic nutrients and organic carbon sources are supplied in the medium before inoculation. In this study, however, an alternative approach was adopted in Haematococcus pluvialis Flotow, a microalga capable of growing mixotrophically on sodium acetate (Na-Ac). First, the cells were grown under 75 ${\mu}Mol$ photons $m^{-2}s^{-1}$ phototrophically without Na-Ac until the stationary phase and then exposed to five different light regimes by the addition of Na-Ac (e.g., dark, 20, 40, 75, and 150 ${\mu}Mol$ photons $m^{-2}s^{-1}$). Dry weight (DW), pigments, and especially cell number in alternative mixotrophy (AM) were higher than traditional mixotrophy (TM). Cell number in AM almost doubled up from 21.7 to $42.9{\times}10^4$ cells/ml during 5-day exposure to Na-Ac, whereas the increase was only 1.2-fold in TM. Maximum cell density was reached in 75 ${\mu}Mol$ photons $m^{-2}s^{-1}$ among the light intensities tested. We propose that Na-Ac in TM of H. pluvialis can not be utilized as efficiently as in AM. With this respect, AM has several advantages against TM such as a much higher cell density in a batch culture period and minimized risk of contamination owing to the shorter exposure of cells to organic carbon sources. In consequence, this method may be used for other strains of the species, and even for the other microalgal species able to grow mixotrophically.

Rhodopsedomonas palustris P4를 이용한 Trickle Bed Reactor에서의 일산화탄소와 물로부터 연속적인 수소생산

  • Park, Ji-Yeong;Lee, Tae-Ho;Park, Seong-Hun
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.241-244
    • /
    • 2000
  • Continuous $H_2$ production from CO and water was studied in a trickle bed reactor(TBR) using Rhodopspedomonas palustris P4. To achieve high cell density, R. palustris P4 were cultivated by a fed-batch culture mode under chemoheterotrophic and aerobic condition, and final cell concentration was 13 g/L. TBR could provide sufficient residence time for CO to contact with cell suspension circulating TBR. The maximum CO uptake rate was found to be 16 mmol/L/hr at gas retention time of 50 min and CO partial pressure of 0.4 atm. In our correlation of the experimental data with mathematical model of TBR, the TBR operation with P4 was found to be lie in an intermediate state between mass transfer limitation and kinetic limitation. Due to the high cell density as well as hydrogen production activity in this study, TBR operation showed a superior performance to other previous reports on microbial hydrogen production.

  • PDF

Enhancing Electricity Generation Using a Laccase-Based Microbial Fuel Cell with Yeast Galactomyces reessii on the Cathode

  • Chaijak, Pimprapa;Sukkasem, Chontisa;Lertworapreecha, Monthon;Boonsawang, Piyarat;Wijasika, Sutthida;Sato, Chikashi
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.8
    • /
    • pp.1360-1366
    • /
    • 2018
  • The fungi associated with termites secrete enzymes such as laccase (multi-copper oxidase) that can degrade extracellular wood matrix. Laccase uses molecular oxygen as an electron acceptor to catalyze the degradation of organic compounds. Owing to its ability to transfer electrons from the cathodic electrode to molecular oxygen, laccase has the potential to be a biocatalyst on the surface of the cathodic electrode of a microbial fuel cell (MFC). In this study, a two-chamber MFC using the laccase-producing fungus Galactomyces reessii was investigated. The fungus cultured on coconut coir was placed in the cathode chamber, while an anaerobic microbial community was maintained in the anode chamber fed by industrial rubber wastewater and supplemented by sulfate and a pH buffer. The laccase-based biocathode MFC (lbMFC) produced the maximum open circuit voltage of 250 mV, output voltage of 145 mV (with a $1,000{\Omega}$ resistor), power density of $59mW/m^2$, and current density of $278mA/m^2$, and a 70% increase in half-cell potential. This study demonstrated the capability of laccase-producing yeast Galactomyces reessii as a biocatalyst on the cathode of the two-chamber lbMFC.

Insect Cell Culture for Recombinant $\beta$-galactosidase Production Using a Spin-filter Bioreactor

  • Chung, In-Sik;Kim, Hak-Ryul;Lee, Ki-Woong;Kim, Tae-Yong;Oh, Jai-Hyn;Yang, Jai-Myung
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.3
    • /
    • pp.200-203
    • /
    • 1994
  • Spodoptera frugiperda IPLB-SF-21-AE cells were cultivated in a spin-filter bioreactor with continuous perfusion for the recombinant $\beta$-galactosidase production. At the perfusion rate of 0.06 $hr^{-1}$, the maximum cell density of insect cells in this bioreactor system reached 3.5$\times$$l0^6$ viable cells/ml using the Grace media containing 5% FBS and 0.3% Pluronic F-68. The recombinant $\beta$-galactosidase production of 8, 100 units per reactor volume was also achieved at this perfusion rate.

  • PDF