• Title/Summary/Keyword: max straw

Search Result 11, Processing Time 0.023 seconds

Effect on Plant Growth and Antibiosis of Rice Straw Liquor Extracted from Rice Straw (볏짚에서 추출한 짚초액의 식물성장에 대한 영향과 항균 효과)

  • Kang, Hwa-Young;Kim, Se-Hoon;Kim, Young-Ju;Park, Sang-Sook
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.3
    • /
    • pp.178-186
    • /
    • 2009
  • Rice straw liquid was prepared from rice straw using simple pyrolysis furnace, and its effects on plant growth and antibiosis were investigated. Effects of straw liquid on plant growth of Oryza sativa L., Glycine max Merr. and Lactuca sativa L. and antibiosis of bacteria and mold of rice straw liquid were studied. Th rice straw liquid showed good results on plant growth and multiplication. Rice straw liquid showed a little antibiosis on bacteria but non antibiosis on mold. Rice straw liquid had minimal inhibitory concentration of 2.5-5% for bacteria.

High-Performance Liquid Chromatographic Determination of Tricyclazole Residues in Rice Grain, Rice Straw, and Soil

  • Lee, Young-Deuk;Lee, Jung-Hun
    • Applied Biological Chemistry
    • /
    • v.41 no.8
    • /
    • pp.595-599
    • /
    • 1998
  • An analytical method was developed to determine tricyclazole residues in rice grain, straw, and soil using high-performance liquid chromatography (HPLC) with ultraviolet absorption detection. Tricyclazole was extracted with methanol from moist rice grain, straw, and soil samples. n-Hexane washing was employed to remove nonpolar co-extractives during liquid-liquid partition. Tricyclazole was then extracted with dichloromethane from alkaline aqueous phase, while acidic interferences remained in the phase. Dichloromethane extract was further purified by silica gel column chromatography prior to HPLC determination. Reverse-phase HPLC using an octadecylsilyl column was successfully applied to separate and quantitate the tricyclazole residue in sample extracts monitored at ${\lambda}_{max}$ 225nm. Recoveries from fortified samples averaged $95.5{\pm}3.0%\;(n=6),\;87.5{\pm}20.%\;(n=6),\;and\;84.3{\pm}2.8%$ (n=12) for rice grain, straw, and soil, respectively. Detection limit of the method was 0.02 mg/kg for rice grain and soil samples while 0.05 mg/kg for rice straw samples. The proposed method was reproducible and sensitive enough to evaluate the safety of tricyclazole residues in rice grain, straw, and soil.

  • PDF

Effect of Rice Straw Compost on Cadmium Transfer and Metal-ions Distribution at Different Growth Stages of Soybean

  • Jung, Ha-il;Chae, Mi-Jin;Kong, Myung-Suk;Kang, Seong-Soo;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.644-650
    • /
    • 2016
  • In soil-to-plant transfer of heavy metals, the amount absorbed and accumulated varies depending on the environment conditions. The absorption rate of cadmium (Cd) in plants differs considerably depending on the bioavailability of Cd in the soil, while usage by various organic matters is also reported to affect absorption patterns. Therefore, this study aimed to identify the difference in the transfer of essential metal ions and Cd to various plant parts when rice straw compost was used to cultivate soybean (Glycine max L. cv. Daepung). In the two-leaf stage of soybean cultivated in a greenhouse, Cd was mixed in the soil, after which the Cd and essential metal ions contents, and physiological changes of soybean seedlings were studied on the 15th and 25th day. The Cd toxicity in the plant was reduced with the use of rice straw compost. Further, the Cd content varied with the plant part, and was higher in young leaves (3rd and 4th leaf) than in the stem. When analyzed by leaf age, the Cd transfer was highest in young leaves (3rd and 4th leaf), followed by mature leaves (1st and 2nd leaf). While there was no significant difference between plant tissues in the absorption rate of copper (Cu) and zinc (Zn) when rice straw compost was used against Cd toxicity, the absorption rate of manganese (Mn) and iron (Fe) showed a significant decline in both the control and rice straw compost treatment conditions, as well as a significant difference between leaf ages. Therefore, these results confirm that the use of rice straw compost against Cd toxicity is effective, and implies that the rate of Cd transfer in the soybean plant varies significantly with leaf age.

High-Performance Liquid Chromatographic Determination of Cyclosulfamuron Residues in Soil, Water, Rice Grain and Straw

  • Lee, Young-Deuk;Kwon, Chan-Hyeok
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.4
    • /
    • pp.251-257
    • /
    • 2004
  • Analytical methods were developed to determine cyclosulfamuron residues in soil, water, rice grain and straw using high-performance liquid chromatography (HPLC) with ultraviolet absorption detection. In these methods, cyclosulfamuron was extracted with aqueous $Na_2HPO_4$/acetone and acetone/methanol mixture from soil and rice samples respectively. Liquid-liquid partition coupled with ion-associated technique, Florisil column chromatography, and solid-phase extraction (SPE) were used to separate cyclosulfamuron from interfering co-extractives prior to HPLC analysis. For water sample, the residue was enriched in $C_{18}$-SPE cartridge, cleaned up in situ, and directly subjected to HPLC. Reverse-phase HPLC under ion-suppression was successfully applied to determine cyclo-sulfamuron in sample extracts with the detection at its ${\lambda}_{max}$ (254 nm). Recoveries from fortified samples averaged $87.8{\pm}7.1%$ (n=12), $97.3{\pm}7.2%$ (n=12), $90.8{\pm}6.6%$ (n=6), and $78.5{\pm}6.7%$ (n=6) for soil, water, rice grain and straw, respectively. Detection limits of the methods were 0.004 mg/kg, 0.001 mg/L, 0.01 mg/kg and 0.02 mg/kg for soil, water, rice grain and straw samples, respectively.

Purification and Characterization of Xylanase from Fomitopsis palustris in Rice Straw Culture (볏짚분해과정 중에 생산하는 Fomitopsis palustris 균체 외 Xylanase의 분리정제 및 효소특성)

  • Yoon, Jeong-Jun;Lee, Young-Min;Choi, Doo-Yeol;Kim, Young-Kyoon;Kim, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.159-165
    • /
    • 2007
  • An extracellular xylanase from the brown-rot fungus Fomitopsis palustris grown on rice straw culture was purified to a single protein band. On SDS-PAGE, the molecular mass of purified enzyme was estimated to be about 43 kDa. The amino acid sequence of the proteolytic fragments showed high homology with fungal glycoside hydrolase family 10 xylanases. The $K_m$, $K_{cat}$ and $V_{max}$ for birch xylan were $31mg/m{\ell}$, $2.3{\times}10^4/min$ and 252.3 U/mg, respectively. The optimal activity of the purified xylanase from F palustris was observed at pH 4.0~5.0 and $70^{\circ}C$.

Assessing the Use of 5 ml Straws in the Cryopreservation of Boar Semen (돼지 정자 동결보존에 있어 5 ml straw의 한계성 극복)

  • Kim, Beom-Gi;Ham, Hyung-Bin;Kim, Sang-Hyeon;Son, Jung-Ho;Chung, Ki-Hwa
    • Journal of Life Science
    • /
    • v.30 no.1
    • /
    • pp.77-81
    • /
    • 2020
  • The aim of this study was to overcome some of the limiting factors that the maxi cryopreservation straw of 5 ml presents in processing boar semen. Cryopreservation of semen samples was conducted in 0.5 ml and 5.0 ml straws at two freezing rates: -140℃ in 8 minutes and 30 seconds (FR-1) and -140℃ in 14 minutes (FR-2). The straws were then thawed and the semen parameters were compared by Computer Assisted Sperm Analysis, and sperm morphology and acrosome status were examined by Coomassie blue staining. The effects of different thawing temperatures and durations were also compared, namely 37℃ for 115 sec, 50℃ for 45 sec, or 70℃ for 25 sec. In general, the FR-1 group showed higher (p<0.05) sperm viability and motility than the FR-2 group in the 5.0 ml straws. Compared to other ranges, thawing at 50℃ for 45 sec showed the highest sperm viability and motility (68.4±3.6% and 69.5±2.2%, p<0.05), suggesting that thawing temperature should be adjusted concurrently with freezing rate. Sperm morphology and acrosome integrity did not significantly differ among the groups (p>0.05). The data obtained in this study suggest that improving the freezing-thawing protocol for one artificial insemination dose straws (5.0 ml) retains the sperm's parameters from 0.5 ml cryopreservation, and is more convenient to handle, which could result in enhanced reproductive performance.

Evaluating Carriers for Immobilizing Saccharomyces cerevisiae for Ethanol Production in a Continuous Column Reactor

  • Cha, Hye-Geun;Kim, Yi-Ok;Choi, Woon Yong;Kang, Do-Hyung;Lee, Hyeon-Yong;Jung, Kyung-Hwan
    • Mycobiology
    • /
    • v.42 no.3
    • /
    • pp.249-255
    • /
    • 2014
  • We evaluated a more practical and cost-effective immobilization carriers for ethanol production using the yeast Saccharomyces cerevisiae. Three candidate materials-rice hull, rice straw, and sawdust-were tested for their cell-adsorption capacity and operational durability. Derivatizations of rice hull, rice straw, and sawdust with the optimal concentration of 0.5 M of 2-(diethylamino)ethyl chloride hydrochloride (DEAE HCl) resulted in > 95% adsorption of the initial yeast cells at 2 hr for DEAE-rice hull and DEAE-sawdust and in only approximately 80% adsorption for DEAE-rice straw. In addition, DEAE-sawdust was found to be a more practical carrier for immobilizing yeast cells in terms of operational durability in shaking flask cultures with two different speeds of 60 and 150 rpm. Furthermore, the biosorption isotherms of DEAE-rice hull, -rice straw, and -sawdust for yeast cells revealed that the $Q_{max}$ of DEAE-sawdust (82.6 mg/g) was greater than that of DEAE-rice hull and DEAE-rice straw. During the 404-hr of continuous column reactor operation using yeast cells immobilized on DEAE-sawdust, no serious detachment of the yeast cells from the DEAE-sawdust was recorded. Ethanol yield of approximately 3.04 g/L was produced steadily, and glucose was completely converted to ethanol at a yield of 0.375 g-ethanol/g-glucose (73.4% of the theoretical value). Thus, sawdust is a promising practical immobilization carrier for ethanol production, with significance in the production of bioethanol as a biofuel.

Characterization of a GH8 β-1,4-Glucanase from Bacillus subtilis B111 and Its Saccharification Potential for Agricultural Straws

  • Huang, Zhen;Ni, Guorong;Zhao, Xiaoyan;Wang, Fei;Qu, Mingren
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.10
    • /
    • pp.1446-1454
    • /
    • 2021
  • Herein, we cloned and expressed an endo-β-1,4-glucanase gene (celA1805) from Bacillus subtilis B111 in Escherichia coli. The recombinant celA1805 contains a glycosyl hydrolase (GH) family 8 domain and shared 76.8% identity with endo-1,4-β-glucanase from Bacillus sp. KSM-330. Results showed that the optimal pH and temperature of celA1805 were 6.0 and 50℃, respectively, and it was stable at pH 3-9 and temperature ≤50℃. Metal ions slightly affected enzyme activity, but chemical agents generally inhibited enzyme activity. Moreover, celA1805 showed a wide substrate specificity to CMC, barley β-glucan, lichenin, chitosan, PASC and avicel. The Km and Vmax values of celA1805 were 1.78 mg/ml and 50.09 µmol/min/mg. When incubated with cellooligosaccharides ranging from cellotriose to cellopentose, celA1805 mainly hydrolyzed cellotetrose (G4) and cellopentose (G5) to cellose (G2) and cellotriose (G3), but hardly hydrolyzed cellotriose. The concentrations of reducing sugars saccharified by celA1805 from wheat straw, rape straw, rice straw, peanut straw, and corn straw were increased by 0.21, 0.51, 0.26, 0.36, and 0.66 mg/ml, respectively. The results obtained in this study suggest potential applications of celA1805 in biomass saccharification.

Effect of Mulching Materials on Bolting and Growth in Angelica koreana Max. (피복재료가 강활의 추대 및 생육에 미치는 영향)

  • Lee, Sang-Seok;Choi, Hyo-Sim;Sohn, Hyoung-Rac;Hur, Bong-Koo;Oh, Sei-Myoung;Kim, Soo-Yong
    • Korean Journal of Plant Resources
    • /
    • v.20 no.4
    • /
    • pp.331-335
    • /
    • 2007
  • This study was conducted to investigate the soil mulching effect on bolting and growth of Angelica koreana Max. The bolting ratio were 8.4% of non-mulching, 11.4% of black polyethylene film, 13.6% of transparent polyethylene film, 6.4% of rice-straw mulching. The mulching of polyethylene film induced higher bolting response than other materials. The radical leaf length, the number of leaf and crown in black P.E. film mulched were all higher than those of non-mulching and rice-straw mulching. The yield of the underground part of P.E film mulching was higher than non-mulching and rice-straw mulching. Comparing with other treatments, the dry root yield of black P.E. film mulching showed the most.

Rice (Oryza sativa L.) Growth Promotion by Various Plant Extracts Produced Using Different Extraction Methods

  • Ei Ei;Hyun Hwa Park;Yong In Kuk
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.53-53
    • /
    • 2022
  • Modem agricultural production needs to provide sustainable management practices that are eco-friendly and low cost. Plant extracts are a cost-effective and environmentally friendly alternative to synthetic plant growth regulators. This study was therefore carried out to investigate the effects of various plant extracts produced using different extraction methods on the vegetative growth of rice under laboratory and greenhouse conditions. For this study, seventeen plant extracts were made from plant species such as leaves of M. arvense, C. asiatica, M. oleifera, V. radiata, V. unguiculate, P. guajava, A. vera, and A. tuberosum, aboveground plant parts of C. rotundus, M. sativa, and P. frutescens, roots of R. undulatum, tubers of A. sativum, leaves and stems of G. max (cv. Taegwang) as well as rice straw and hulls (cv. Hopyeong). As a test crop, we applied these extracts to rice plants. For the purpose of making our extracts, some plant materials and species were collected in fields and others were purchased from Chonnam Hanyaknonghyup Cooperation (South Korea). Leaves, roots, and aboveground plant parts of plant species were dried, ground, extracted (water, boiling water and ethanol) and fermented. Rice growth promotion effects were determined using plant extracts at 0, 0.05, 0.1, 0.5, and 1% concentrations under petri dish conditions. Seven selected plant extracts were applied to rice seeds with soil drench application or seedling at 3-4 leaf stages with soil and foliar applications under greenhouse conditions. For comparison with extracts, we used urea at 0.6%. Of the 17 water extracts used in this study, 10 extracts reduced rice growth, but the other 7 extracts (P. guajava, A. vera, A. tuberosum, M. sativa, A. sativum, and G. max) increased growth by 40-60% on compared to the control in Petri dish bioassay. Thus, these 7 extracts were selected for further study. Under greenhouse conditions, rice growth also increased by 20-40% when the same 7 extracts were applied to rice seeds using soil drench application. Furthermore, at the 3-4 leaf stage rice growth also increased 30-80% or 30-60% when the same 7 extracts were applied using soil and foliar applications. Overall, the 7 extracts produced higher rates of growth promotion when soil drench application was used than when foliar application was used. In the case of boiling water and ethanol extracts, rice growth increased only 20% in response to both soil drench and foliar application of the same 7 extracts. Rice growth promotion was greater when extracts were produced using water extraction method than boiling water and ethanol extraction methods. Most notably, the 7 water extracts used in this study produced higher rates of growth promotion than urea at 0.6% which is typically used for crop growth promotion. Overall, the 7 water extracts when applied using soil drenching method can be used as effective growth promotors of rice in organic agriculture.

  • PDF