• 제목/요약/키워드: matrix stiffness method

검색결과 571건 처리시간 0.027초

임계속도를 이용한 로터의 결함 위치와 크기 판별 (Detecting Location and Depth of Cracks in Rotor using Critical Speed)

  • 김흥수;조맹효
    • 한국항공우주학회지
    • /
    • 제34권5호
    • /
    • pp.39-45
    • /
    • 2006
  • 항공기의 가스터빈 엔진에서 축에 결함이 있을 경우에 대한 건전성 평가를 비파괴방법으로 접근했다. 로터의 축에 결함이 있을 경우에는 국지적으로 강성이 약화되어 임계속도가 달라진다. 결함이 있는 축의 순응도(compliance)행렬을 이용해서 각각의 결함의 위치와 깊이에 따른 임계속도를 구하고 이러한 결과들을 이용해 역 문제에 대한 자료를 구축함으로써 엔진 축의 건전성 평가를 수행하였다.

An efficient approach to structural static reanalysis with added support constraints

  • Liu, Haifeng;Wu, Baisheng;Li, Zhengguang
    • Structural Engineering and Mechanics
    • /
    • 제43권3호
    • /
    • pp.273-285
    • /
    • 2012
  • Structural reanalysis is frequently used to reduce the computational cost during the process of design or optimization. The supports can be regarded as the design variables in various types of structural optimization problems. The location, number, and type of supports may be varied in order to yield a more effective design. The paper is focused on structural static reanalysis problem with added supports where some node displacements along axes of the global coordinate system are specified. A new approach is proposed and exact solutions can be provided by the approach. Thus, it belongs to the direct reanalysis methods. The information from the initial analysis has been fully exploited. Numerical examples show that the exact results can be achieved and the computational time can be significantly reduced by the proposed method.

압전세라믹 PZT-고분자 1-3-0형 복합압전체의 제작 및 특성 (Fabrication and Properties of Piezoceramic PZT-Polymer 1-3-0 Type Composites)

  • 양윤석;박정학;손무헌;최헌일;사공건
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.804-806
    • /
    • 1998
  • In this study, piezoelectric composites with 1-3-0 connectivity have been studied. A Piezoelectric ceramic PZT Prepared by Wet-Dry Combination method is used as a filler in mixture of Eccogel polymer matrix and third Phase. The density and stiffness of 1-3-0 type composites were decreased with increasing the third phase.

  • PDF

강상자거더의 뒤틀림해석에 관한 유한요소 정식화 (Finite Element Formulation for the Distortion Analysis of Steel Box Girders)

  • 최영준;정래영;황선호;강영종
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.327-334
    • /
    • 1999
  • Steel box girders are popular to the Practicing engineers for the its large Pure torsional constant. But closed box girders at-e susceptible to the eccentric loading due to the distortion of the cross section. Distorton of the box girder develops the warping normal stress and transverse flexural stress in the cross section and their magnitudes can be large unless internal diaphragms are installed sufficiently. In this study, stiffness matrix and equivalent nodal force vector are formulated on the basis of displacement method. Shape functions are directly derived from the homogeneous solution of the governing differential equation of the distortion. New finite element formulations were coded into a computer program. Several numerical examples were presented to show the validity of developed program.

  • PDF

Generalized beam-column finite element on two-parameter elastic foundation

  • Morfidis, K.;Avramidis, I.E.
    • Structural Engineering and Mechanics
    • /
    • 제21권5호
    • /
    • pp.519-537
    • /
    • 2005
  • A new generalized Bernoulli/Timoshenko beam-column element on a two-parameter elastic foundation is presented herein. This element is based on the exact solution of the differential equation which describes the deflection of the axially loaded beam resting on a two-parameter elastic foundation, and can take into account shear deformations, semi - rigid connections, and rigid offsets. The equations of equilibrium are formulated for the deformed configuration, so as to account for axial force effects. Apart from the stiffness matrix, load vectors for uniform load and non-uniform temperature variation are also formulated. The efficiency and usefulness of the new element in reinforced concrete or steel structures analysis is demonstrated by two examples.

Carbon nanofiber-reinforced polymeric nanocomposites

  • Jang, Changwoon;Hutchins, John;Yu, Jaesang
    • Carbon letters
    • /
    • 제14권4호
    • /
    • pp.197-205
    • /
    • 2013
  • Five vapor-grown carbon nanofiber (VGCNF) reinforced vinyl ester (VE) nanocomposite configurations were fabricated, imaged, and mechanically tested in order to obtain information on the influence and the interactions of the role of the microstructure at lower length scales on the observed continuum level properties/response. Three independent variables (the nanofiber weight fraction and two types of nanofiber mixing techniques) were chosen to be varied from low, middle, and high values at equally spaced intervals. Multiple mixing techniques were studied to gain insight into the effect of mixing on the VGCNF dispersion within the VE matrix. The point count method was used for both lower length-scale imaging techniques to provide quantitative approximations of the magnitude and the distribution of such lower length-scale features. Finally, an inverse relationship was shown to exist between the stiffness and strength properties of the resulting nanocomposites under uniaxial quasistatic compression loading.

An 8-node assumed strain element with explicit integration for isotropic and laminated composite shells

  • Kim, K.D.;Park, T.H.
    • Structural Engineering and Mechanics
    • /
    • 제13권4호
    • /
    • pp.387-410
    • /
    • 2002
  • Formulation of an 8 nodes assumed strain shell element is presented for the analysis of shells. The stiffness matrix based on the Mindlin-Reissner theory is analytically integrated through the thickness. The element is free of membrane and shear locking behavior by using the assumed strain method such that the element performs very well in modeling of thin shell structures. The material is assumed to be isotropic and laminated composite. The element has six degrees of freedom per node and can model the stiffened plates and shells. A great number of numerical testing carried out for the validation of present 8 node shell element are in good agreement with references.

Constrained Dynamic Responses of Structures Subjected to Earthquake

  • Eun, Hee Chang;Lee, Min Su
    • Architectural research
    • /
    • 제8권2호
    • /
    • pp.37-42
    • /
    • 2006
  • Starting from the quadratic optimal control algorithm, this study obtains the relation of the performance index for constrained systems and Gauss's principle. And minimizing a function of the variation in kinetic energy at constrained and unconstrained states with respect to the velocity variation, the dynamic equation is derived and it is shown that the result compares with the generalized inverse method proposed by Udwadia and Kalaba. It is investigated that the responses of a 10-story building are constrained by the installation of a two-bar structure as an application to utilize the derived equations. The structural responses are affected by various factors like the length of each bar, damping, stiffness of the bar structure, and the junction positions of two structures. Under an assumption that the bars have the same mass density, this study determines the junction positions to minimize the total dynamic responses of the structure.

보강된 구조물의 기하학적 비선형 해석을 위한 편심 응축 셸 요소 (An Eccentric Degenerated Shell Element for the Geometrically Nonlinear Analysis of Stiffened Structures)

  • 이원재;이병채
    • 대한기계학회논문집A
    • /
    • 제24권7호
    • /
    • pp.1721-1730
    • /
    • 2000
  • An eccentric degenerated shell element with geometric non-linearity for the precise and efficient analysis of stiffened shell structures is developed. To deal with the eccentricity, we define the e ccentric shell and the master shell that constitute one combined shell. It is assumed that the sections remain plane after deformation. The internal force vector and the tangent stiffness matrix based on the virtual work principle in the natural coordinate system are derived. To enhance the robustness of the element, assumed strain method for transverse shear and membrane strains is used. Through numerical experiments the effectiveness of the proposed element is demonstrated.

이동하는 점탄성 보의 스펙트럴 요소모델링 및 동역학 해석 (Spectral Element Modeling and Dynamic Analysis of an Axially Moving Viscoelastic Beam)

  • 오형미;김도연;이우식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1672-1677
    • /
    • 2003
  • In this paper, the spectral element model is derived for the vibration and stability analyses of an axially moving viscoelastic beam subjected to axial tension. The viscoelastic material is represented by using a one-dimensional constitutive equation of hereditary integral type. The accuracy of the present spectral element model is first verified by comparing the eigenvalues obtained by the present spectral element model-based SEM with those obtained by the exact theory and the conventional FEM. The effects of viscoelasticity on the vibration and stability of an example moving viscoelastic beam are numerically investigated.

  • PDF