• Title/Summary/Keyword: matrix stiffness method

Search Result 571, Processing Time 0.026 seconds

Seismic Analysis of Flat Slab Structures considering Stiffness Degradation (강성저감을 고려한 플랫슬래브 구조물의 지진해석)

  • 김현수;이승재;이동근
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.191-198
    • /
    • 2003
  • Flat slab system has been adopted in many buildings constructed recently because of the advantage of reduced floor heights to meet the economical and architectural demands. Structural engineers commonly use the equivalent frame method(EFM) with equivalent beams proposed by Jacob S. Grossman in practical engineering for the analysis of flat slab structures. However, in many cases, when it is difficult to use the EFM, it is necessary to use a refined finite element model for an accurate analysis. But it would take significant amount of computational time and memory if the entire building structure were subdivided into a finer mesh. An efficient analytical method is proposed in this study to obtain accurate results in significantly reduced computational time. The proposed method employs super elements developed using the matrix condensation technique and fictitious beams are used in the development of super elements to enforce the compatibility at the interfaces of super elements. The stiffness degradation of flat slab system considered in the EFM was taken into account by reducing the elastic modulus of floor slabs in this study. Static and dynamic analyses of example structures were peformed and the efficiency and accuracy of the proposed method were verified by comparing the results with those of the refined finite element model and the EFM.

  • PDF

New Equivalent Static Analysis Method of Dynamic Behavior during Progressive Collapse (연쇄붕괴의 동적거동을 고려한 새로운 등가정적해석 기법)

  • Kim, Chee-Kyeong;Lee, Jae-Cheol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.239-246
    • /
    • 2007
  • In this paper a new equivalent static analysis method of dynamic behavior during progressive collapse is presented. The proposed analysis method uses the equivalent nodal load for the element stiffness which represents the dynamic behavior influence caused by the deletion of elements during progressive collapse analysis. The proposed analysis method improves the efficiency of progressive collapse analysis haying the iterative characteristic because the inverse of the structural stiffness matrix is roused in the reanalysis. By comparing the results obtained by this analysis method with those of GSA code analysis and time history analysis, it is shown that the results obtained by this analysis method more closely approach to those of time history analysis than by GSA code analysis.

A 9-node Degenerated Shell Element for Inelastic Analysis of Reinforced Concrete Structures (철근 콘크리트 구조물의 비탄성 해석을 위한 9절점 퇴화 쉘 요소)

  • 이상진;서정문
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.481-494
    • /
    • 2001
  • An enhanced degenerated shell finite element (FE), which has been developed for inelastic analysis of reinforced concrete structures is described in this paper. Generally, Reissner-Mindlin (RM) assumptions are adopted to develop the degenerated shell FE so that transverse shear deformation effects is considered. However, it is found that there are serious defects such as locking phenomena in RM degenerated shell FE since the stiffness matrix has been overestimated in some situations. As remedies of locking phenomena, reduced integration, incompatible mode and assumed strain method have been used. Especially, the assumed strain method has been successfully used in many FEs. But contrarily, there is a few investigation on the performance of the assumed strains in the inelastic analysis of concrete structures. Therefore, shell formulation is provided in this paper with emphasis on the terms related to the stiffness matrix based on assumed strain method and microscopic concrete material model. Finally, the performance of the present shell element is tested and demonstrated with several numerical examples. From the numerical tests, the present result shows a good agreement with experimental data or other numerical results.

  • PDF

Numerical Evaluation of Fundamental Finite Element Models in Bar and Beam Structures (Bar와 Beam 구조물의 기본적인 유한요소 모델의 수치해석)

  • Ryu, Yong-Hee;Ju, Bu-Seog;Jung, Woo-Young;Limkatanyu, Suchart
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • The finite element analysis (FEA) is a numerical technique to find solutions of field problems. A field problem is approximated by differential equations or integral expressions. In a finite element, the field quantity is allowed to have a simple spatial variation in terms of linear or polynomial functions. This paper represents a review and an accuracy-study of the finite element method comparing the FEA results with the exact solution. The exact solutions were calculated by solid mechanics and FEA using matrix stiffness method. For this study, simple bar and cantilever models were considered to evaluate four types of basic elements - constant strain triangle (CST), linear strain triangle (LST), bi-linear-rectangle(Q4),and quadratic-rectangle(Q8). The bar model was subjected to uniaxial loading whereas in case of the cantilever model moment loading was used. In the uniaxial loading case, all basic element results of the displacement and stress in x-direction agreed well with the exact solutions. In the moment loading case, the displacement in y-direction using LST and Q8 elements were acceptable compared to the exact solution, but CST and Q4 elements had to be improved by the mesh refinement.

Vector mechanics-based simulation of large deformation behavior in RC shear walls using planar four-node elements

  • Zhang, Hongmei;Shan, Yufei;Duan, Yuanfeng;Yun, Chung Bang;Liu, Song
    • Structural Engineering and Mechanics
    • /
    • v.74 no.1
    • /
    • pp.1-18
    • /
    • 2020
  • For the large deformation of shear walls under vertical and horizontal loads, there are difficulties in obtaining accurate simulation results using the response analysis method, even with fine mesh elements. Furthermore, concrete material nonlinearity, stiffness degradation, concrete cracking and crushing, and steel bar damage may occur during the large deformation of reinforced concrete (RC) shear walls. Matrix operations that are involved in nonlinear analysis using the traditional finite-element method (FEM) may also result in flaws, and may thus lead to serious errors. To solve these problems, a planar four-node element was developed based on vector mechanics. Owing to particle-based formulation along the path element, the method does not require repeated constructions of a global stiffness matrix for the nonlinear behavior of the structure. The nonlinear concrete constitutive model and bilinear steel material model are integrated with the developed element, to ensure that large deformation and damage behavior can be addressed. For verification, simulation analyses were performed to obtain experimental results on an RC shear wall subjected to a monotonically increasing lateral load with a constant vertical load. To appropriately evaluate the parameters, investigations were conducted on the loading speed, meshing dimension, and the damping factor, because vector mechanics is based on the equation of motion. The static problem was then verified to obtain a stable solution by employing a balanced equation of motion. Using the parameters obtained, the simulated pushover response, including the bearing capacity, deformation ability, curvature development, and energy dissipation, were found to be in accordance with the experimental observation. This study demonstrated the potential of the developed planar element for simulating the entire process of large deformation and damage behavior in RC shear walls.

Algorithm of solving the problem of small elastoplastic deformation of fiber composites by FEM

  • Polatov, Askhad M.;Khaldjigitov, Abduvali A.;Ikramov, Akhmat M.
    • Advances in Computational Design
    • /
    • v.5 no.3
    • /
    • pp.305-321
    • /
    • 2020
  • In this paper is presented the solution method for three-dimensional problem of transversely isotropic body's elastoplastic deformation by the finite element method (FEM). The process of problem solution consists of: determining the effective parameters of a transversely isotropic medium; construction of the finite element mesh of the body configuration, including the determination of the local minimum value of the tape width of non-zero coefficients of equation systems by using of front method; constructing of the stiffness matrix coefficients and load vector node components of the equation for an individual finite element's state according to the theory of small elastoplastic deformations for a transversely isotropic medium; the formation of a resolving symmetric-tape system of equations by summing of all state equations coefficients summing of all finite elements; solution of the system of symmetric-tape equations systems by means of the square root method; calculation of the body's elastoplastic stress-strain state by performing the iterative process of the initial stress method. For each problem solution stage, effective computational algorithms have been developed that reduce computational operations number by modifying existing solution methods and taking into account the matrix coefficients structure. As an example it is given, the problem solution of fibrous composite straining in the form of a rectangle with a system of circular holes.

Parameters Identification of Gantry Crane By Using ANSYS

  • Kim, Hwan-Seong;Nguyen, Tuong-Long
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.62.5-62
    • /
    • 2002
  • The main purpose of this paper is to identify the important parameters and to examine their relations to one another while gantry crane structure was modeled. The important elements of the structural analysis are included, such as the stiffness matrix and its relations to the degrees of freedom, the displacement, and frequency responses. To investigate these relations, the parametric modeling of a dynamic system is solved by using the finite element method (ANSYS-Program). Furthermore, EXPRESS schema and C-FAR (change favorable representation) are described how to change the frame length of gantry crane which influences other elements. Since this relationship is established, the results may...

  • PDF

Vibration Analysis of Arbitrarily-Shaped Beams (임의 형태를 가진 보의 진동해석)

  • 민경원;강경수;홍성목
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.175-180
    • /
    • 1993
  • A new method for the vibration analysis of arbitrarily-shaped beams is proposed on the assumption of imaginary seperation of the beams into prismatic beams and the remaining portions. The stiffness and mass of the beams are devided into two portions according to the seperation. Applying the mode shapes of prismatic beams and Lagrange's equations give new characteristics equation. This equation has a low dimension of matrix with the coupling terms showing the effect of remaining portions on the vibration of arbitrarily-shaped beams

  • PDF

An analysis of progressing buckles of thin compressed beam with contact treatment (접촉을 고려한 보의 탄소성 좌굴진행 해석)

  • 김종봉;양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.28-31
    • /
    • 1997
  • Buckling analysis of thin compressed beam has been carried out. Pre-buckling and post-buckling are simulated by finite element method incorporating with the incremental nonlinear theory and the Newton-Raphson solution technique. In order to find the bifurcation point, the determinent of the stiffness matrix is calculated at every iteration procedure. For post-buckling analysis, a small perturbed initial guess is given along the eigenvector direction at the bifurcation point. Nonlinear elastic buckling and elastic-plastic buckling of cantilever beam are analyzed. The buckling load and buckled shape of the two models are compared.

  • PDF

Finite Element Analysis for Steady State Forming Process of Polycrystalline Metal Including Texture Development (집합조직의 발전을 반영하는 다결정재의 정상상태성형공정해석)

  • 김응주;이용신
    • Transactions of Materials Processing
    • /
    • v.5 no.4
    • /
    • pp.297-304
    • /
    • 1996
  • A process model is formulated considering the effect of crystallographic texture developed in forming process. The deformation induced plastic anisotropy can be predicted by capturing the evolution of texture during large deformation in the polycrystalline aggregate. The anisotropic stiffness matrix for the aggregate is derived and implemented in Eulerian finite element code using a Consistent Penalty method. As an application the evolution of texture in rolling drawing and extrusion processes are simulated. The numerical results show good agreements with report-ed experimental textures.

  • PDF