• Title/Summary/Keyword: matrix stiffness method

검색결과 571건 처리시간 0.024초

유전알고리즘에 의한 강봉의 감쇠행렬 산출법 (Identification of Damping Matrix for a Steel Bar by the Genetic Algorithm)

  • 박석주;박영범;박경일;제해광;이금주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권2호
    • /
    • pp.271-277
    • /
    • 2011
  • 이 연구에서는 유전알고리즘을 이용하여 강봉의 감쇠행렬을 산출하는 방법을 제안하다. 감쇠행렬이 강성행렬과 비례한다는 가정을 전제로 각 요소강성행렬에 임의의 정수를 곱하여 감쇠행렬을 구성하여 주파수응답함수를 구성하고, 이를 실험 주파수응답함수와 비교한 값을 목적함수로 하여 목적함수가 가장 작은 정수의 감쇠행렬을 구한다. 비감쇠 해석의 경우보다 목적함수의 값이 약 1/60로 작아지는 것을 알 수 있었다. 이를 이용하면 큰 구조물의 감쇠가 큰 일부 부분구조물을 떼어내어 감쇠행렬을 구할 수 있어 구조물의 감쇠진동해석을 하는데 도움이 될 것으로 사료된다.

점진적 파손해석 기법을 이용한 복합재 체결부의 강도해석 (Strength Estimation of Composite Joints Based on Progressive Failure Analysis)

  • 신소영;박노회;강경국;권진회;이상관;변준형
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.163-167
    • /
    • 2001
  • A two-dimensional progressive failure analysis method is presented for the strength characterization of the composite joints under pin loading. The eight-nodes laminated she]1 element is utilized based on the updated Lagrangian formulation. The criteria by Yamada-Sun, Tsai-Wu, and the maximum stress are used for the failure estimation. The stiffness of failed layer is degraded by the complete unloading method. No factor depending on test is included in the finite element analysis except for the material strength and stiffness. Total 20 plate specimens with and without hole are tested to validate the finite element prediction. The Tsai-Wu failure criterion most conservatively estimates the strength of laminate, and the maximum stress criterion yields the highest strength because it does not consider the coupling of the failure modes. The strength by Yamada-Sun method neglecting the matrix failure effect are located between other two methods and shows best agreement with test result for laminate with hole.

  • PDF

6축 병렬형 순응기구를 이용한 위치/힘 동시제어 (Kinestatic Control using Six-axis Parallel-type Compliant Device)

  • 김한성
    • 한국생산제조학회지
    • /
    • 제23권5호
    • /
    • pp.421-427
    • /
    • 2014
  • In this paper, the kinestatic control algorithm using a six-axis compliant device is presented. Unlike the traditional control methods using a force/torque sensor with very limited compliance, this method employs a compliant device to provide sufficient compliance between an industrial robot and a rigid environment. This kinestatic control method is used to simply control the position of an industrial robot with twists of compensation, which can be decomposed into twists of compliance and twists of freedom. A simple design method of a six-axis parallel-type compliant device with a diagonal stiffness matrix is presented. A compliant device prototype and kinestatic control hardware system and programming were developed. The effectiveness of the kinestatic control algorithm was verified through two kinds of kinestatic control experiments.

2차 모우드 섭동법에 의한 구조물의 손상도 추정 (Damage Estimation of Structures by Second Order Modal Perturbation)

  • 홍규선;윤정방;류정선
    • 전산구조공학
    • /
    • 제5권3호
    • /
    • pp.119-126
    • /
    • 1992
  • 교량, 발전소, 해양구조물과 같은 토목구조물은 사용기간중에 지진, 바람, 파랑하중등에 의해 구조적 손상을 받기 쉽다. 장기간에 걸쳐 구조물에 손상이 누적되면 구조물 전체의 파괴를 초래할 수도 있다. 따라서 현존하는 구조물의 안전성을 분석하기 위한 구조물의 손상도를 추정하는 방법이 필요하다. 본 논문에서는 Inverse Modal Perturbation기법을 이용하여 구조물의 손상도를 추정하는 방법에 대하여 연구하였다. Perturbation식은 구조물의 강성 및 질량행렬의 변화량과 구조물의 고유진동수와 모우드형상의 변화량의 식으로 구성된다. 또한 구조물의 손상은 강성행렬의 변화량으로 표현하였다. 본 연구에서는 구조물의 손상도추정의 효율성을 증대시키기 위하여 2차-Perturbation식을 구성하고, 이것을 반복적인 절차를 거쳐 해를 구하는 방법에 대하여 연구하였다. 제안된 방법의 효율성은 일련의 예제해석을 통하여 검증하였으며, 추정된 결과로 부터 본 방법이 구조물의 손상을 적절히 산정함을 알 수 있었다.

  • PDF

Stability of multi-step flexural-shear plates with varying cross-section

  • Xu, J.Y.;Li, Q.S.
    • Structural Engineering and Mechanics
    • /
    • 제16권5호
    • /
    • pp.597-612
    • /
    • 2003
  • In this paper, multi-story buildings with shear-wall structures and with narrow rectangular plane configuration are modeled as a multi-step flexural-shear plate with varying cross-section for buckling analysis. The governing differential equation of such a plate is established. Using appropriate transformations, the equation is reduced to analytically solvable equations by selecting suitable expressions of the distribution of stiffness. The exact solutions for buckling of such a one-step flexural-shear plate with variable stiffness are derived for several cases. A new exact approach that combines the transfer matrix method and closed from solution of one-step flexural-shear plate with continuously varying stiffness is presented for stability analysis of multi-step non-uniform flexural-shear plate. A numerical example shows that the present methods are easy to implement and efficient.

유동이 있는 배관-마운트 계의 진동저감설계 CAE Tool개발 (Development of CAE tool for reducing vibration of pipe-mount system conveying fluid)

  • 이성현;전수홍;정의봉
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.472-473
    • /
    • 2008
  • In this research, the finite element model is formulated taking into consideration of the effects of the fluid flow in a pipe. The characteristic of vibration is presented using mass, damping and stiffness matrix in the finite element equation of this pipe system. The displacement distribution of pipe system caused by fluid force is discussed. The method for optimizing the location of mount and the value of mount stiffness to reduce the vibration of pipe system is introduced.

  • PDF

Preliminary Structural Design of Wall-Frame Systems for Optimum Torsional Response

  • Georgoussis, George K.
    • International Journal of Concrete Structures and Materials
    • /
    • 제11권1호
    • /
    • pp.45-58
    • /
    • 2017
  • Recent investigations have pointed out that current code provisions specifying that the stiffness of reinforced concrete elements is strength independent, and therefore can be estimated prior to any strength assignment, is incorrect. A strength allocation strategy, suitable for preliminary structural design of medium height wall-frame dual systems, is presented for allocating strength in such buildings and estimating the dependable rigidities. The design process may be implemented by either the approximate continuous approach or the stiffness matrix method. It is based on the concept of the inelastic equivalent single-degree-of-freedom system which, the last few years, has been used to implement the performance based seismic design. The aforesaid strategy may also be used to determine structural configurations of minimum rotation distortion. It is shown that when the location of the modal centre of rigidity, as described in author's recent papers, is within a close distance from the mass axis the torsional response is mitigated. The methodology is illustrated in ten story building configurations, whose torsional response is examined under the ground motion of Kobe 1995, component KJM000.

유한요소법(有限要素法)에 계(係)한 Bracketed Connection의 해석(解析) (Analysis of Bracketed Connection by a Finite Element Method)

  • 임상전;송준태
    • 대한조선학회지
    • /
    • 제12권1호
    • /
    • pp.23-30
    • /
    • 1975
  • Because of the simplicity in analysis and design of steel structure, the connections of members are assumed either as perfectly hinged or rigidly fixed. However, a more economical design would result if the effect of restraint in connections were included in analyzing frame structure. From this point of view, stiffness matrices for member with bracketed connections are presented in the form of the stiffness matrices for member with variable moment of inertia, modified by a correction matrix, whose elements are functions of fixity factors of the connections. To obtain fixity factors, the displacements and stress distribution of bracketed connections are investigated by using of the degital computer program, which have been developed to make computing time shorten and the round off errors smaller. The relationship of moments and slip angle in bracketed connections are presented in the form of curves, which can be used in establishing a stiffness matrices for member with bracketed connections.

  • PDF

중공 크랭크축 베어링계의 진동해석 (Vibration Analysis of a Hollow Crankshaft Supported by Fluid-film Bearing)

  • 조윤국;김정수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 추계학술대회논문집; 한국과학기술회관; 6 Nov. 1997
    • /
    • pp.333-338
    • /
    • 1997
  • A hollow crankshaft is considered as part of an effort to reduce the weight of the automobile powertrain. Since the resulting mass reduction alters both the inertia and stiffness properties of the crankshaft, the vibration characteristics of the hollow crankshaft needs to be investigated in comparison with the original solid crankshaft. The crankshafts are modeled by 38 lumped mass and stiffness elements, in which the dynamic parameters for each lumped element are obtained by the finite element calculation. The fluid-film bearings supporting the crankshaft give rise to linear spring and damping elements that can be derived from the hydrodynamic bearing model. The transfer matrix method is applied to yield the natural frequencies and mode shapes of the crankshaft vibration. The natural frequencies of the hollow crankshaft are founded to be greater than that of the solid crankshaft, and the incorporation of the bearing stiffness tends to accentuate the difference.

  • PDF

Theoretical analysis of Y-shape bridge and application

  • Lu, Peng-Zhen;Zhang, Jun-Ping;Zhao, Ren-Da;Huang, Hai-Yun
    • Structural Engineering and Mechanics
    • /
    • 제31권2호
    • /
    • pp.137-152
    • /
    • 2009
  • Mechanic behavior of Y-shape thin-walled box girder bridge structure is complex, so one can not exactly hold the mechanical behavior of the Y-shape thin-walled box girder bridge structure through general calculation theory and analytical method. To hold the mechanical behavior better, based on elementary beam theory, by increasing the degree of freedom analytical method, taking account of restrained torsiondistortion angledistortion warp and shearing lag effect at the same time, authors obtain a thin-walled box beam analytical element of 10 degrees of freedom of every node, derive stiffness matrix of the element, and code a finite element procedure. In addition, authors combine the obtained procedure with spatial grillage analytical method, meanwhile, they build a new analytical method that is the spatial thin-walled box girder element grillage analysis method. In order to validate the precision of the obtained analysis method, authors analyze a type Y-shape thin-walled box girder bridge structure according to the elementary beam theory analytical method, the shell theory analytical method and the spatial thin-walled box girder element grillage analysis method respectively. At last, authors test a type Y-shape thin-walled box girder bridge structure. Comparisons of the results of theory analysis with the experimental text show that the spatial thin-walled box girder element grillage analysis method is simple and exact. The research results are helpful for the knowledge of the mechanics property of these Y-shape thin-walled box girder bridge structures.