• Title/Summary/Keyword: matrix solver

Search Result 86, Processing Time 0.023 seconds

A Computational Study about Effects of Operating parameters and EGR compositions on Autoignition Reactivity for DME HCCI Combustion

  • Jamsran, Narankhuu;Lim, Ocktaeck
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.305-307
    • /
    • 2012
  • This study was computationally explored how the fuel autoignition reactivity was affected by operating parameters such as fuel, pressure, intake temperatures, engine speed and EGR compositions for HCCI combustion. This is done for DME and CHEMKIN-PRO was used as a solver. At first, influence of the operating parameters and EGR compositions were showed. And then, in order to clarify the mechanism of them on autoignition reactivity, data-sets of kinetic were analyzed to investigate the elementary reaction path for heat release at transient tempeatures by using contribution matrix.

  • PDF

TIME STEPWISE LOCAL VOLATILITY

  • Bae, Hyeong-Ohk;Lim, Hyuncheul
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.2
    • /
    • pp.507-528
    • /
    • 2022
  • We propose a path integral method to construct a time stepwise local volatility for the stock index market under Dupire's model. Our method is focused on the pricing with the Monte Carlo Method (MCM). We solve the problem of randomness of MCM by applying numerical integration. We reconstruct this task as a matrix equation. Our method provides the analytic Jacobian and Hessian required by the nonlinear optimization solver, resulting in stable and fast calculations.

The General Comparison between Direct Matrix Solvers (직접 행렬해법에 대한 일반적 비교)

  • An B. K.;Park Y. B.;Kim J. H.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.113-116
    • /
    • 2001
  • Finite element analysis programs have been for metal forming process design They will become more and more important in understanding forming process For large-scale forging analysis problems, the performance of a linear equation solver is very important for the overall efficiency of the analysis code. With problem size increased, the computation time needs to be reduced, which is spent on setting the system of algebraic equations associated with finite element model Many matrix solvers have been developed and used usefully in finite element program for this purpose.

  • PDF

TWO-PHASE WAVE PROPAGATIONS PREDICTED BY HLL SCHEME WITH INTERFACIAL FRICTION TERMS (계면마찰항을 고려한 이상유동에서 파동전파에 대한 수치적 연구)

  • Yeom, G.S.;Chang, K.S.;Chung, M.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.115-119
    • /
    • 2009
  • We numerically investigated propagation of various waves in the two-phase flows such as sound wave, shock wave, rarefaction wave, and contact discontinuity in terms of pressure, void fraction, velocity and density of the two phases. The waves have been generated by a hydrodynamic shock tube, a pair of symmetric impulsive expansion, impulsive pressure and impulsive void waves. The six compressible two-fluid two-phase conservation laws with interfacial friction terms have been solved in two fractional steps. The first PDE Operator is solved by the HLL scheme and the second Source Operator by the semi-implicit stiff ODE solver. In the HLL scheme, the fastest wave speeds were estimated by the analytic eigenvalues of an approximate Jacobian matrix. We have discussed how the interfacial friction terms affect the wave structures in the numerical solution.

  • PDF

PERFORMANCE ENHANCEMENT OF PARALLEL MULTIFRONTAL SOLVER ON BLOCK LANCZOS METHOD

  • Byun, Wan-Il;Kim, Seung-Jo
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.13 no.1
    • /
    • pp.13-20
    • /
    • 2009
  • The IPSAP which is a finite element analysis program has been developed for high parallel performance computing. This program consists of various analysis modules - stress, vibration and thermal analysis module, etc. The M orthogonal block Lanczos algorithm with shiftinvert transformation is used for solving eigenvalue problems in the vibration module. And the multifrontal algorithm which is one of the most efficient direct linear equation solvers is applied to factorization and triangular system solving phases in this block Lanczos iteration routine. In this study, the performance enhancement procedures of the IPSAP are composed of the following stages: 1) communication volume minimization of the factorization phase by modifying parallel matrix subroutines. 2) idling time minimization in triangular system solving phase by partial inverse of the frontal matrix and the LCM (least common multiple) concept.

  • PDF

Control System Synthesis Using BMI: Control Synthesis Applications

  • Chung, Tae-Jin;Oh, Hak-Joon;Chung, Chan-Soo
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.2
    • /
    • pp.184-193
    • /
    • 2003
  • Biaffine Matrix Inequality (BMI) is known to provide the most general framework in control synthesis, but problems involving BMI's are very difficult to solve because nonconvex optimization should be solved. In the previous paper, we proposed a new solver for problems involving BMI's using Evolutionary Algorithms (EA). In this paper, we solve several control synthesis examples such as Reduced-order control, Simultaneous stabilization, Multi-objective control, $H_{\infty}$ optimal control, Maxed $H_2$ / $H_{\infty}$control design, and Robust $H_{\infty}$ control. Each of these problems is formulated as the standard BMI form, and solved by the proposed algorithm. The performance in each case is compared with those of conventional methods.

A Scalable Parallel Preconditioner on the CRAY-T3E for Large Nonsymmetric Spares Linear Systems (대형비대칭 이산행렬의 CRAY-T3E에서의 해법을 위한 확장가능한 병렬준비행렬)

  • Ma, Sang-Baek
    • The KIPS Transactions:PartA
    • /
    • v.8A no.3
    • /
    • pp.227-234
    • /
    • 2001
  • In this paper we propose a block-type parallel preconditioner for solving large sparse nonsymmetric linear systems, which we expect to be scalable. It is Multi-Color Block SOR preconditioner, combined with direct sparse matrix solver. For the Laplacian matrix the SOR method is known to have a nondeteriorating rate of convergence when used with Multi-Color ordering. Since most of the time is spent on the diagonal inversion, which is done on each processor, we expect it to be a good scalable preconditioner. We compared it with four other preconditioners, which are ILU(0)-wavefront ordering, ILU(0)-Multi-Color ordering, SPAI(SParse Approximate Inverse), and SSOR preconditiner. Experiments were conducted for the Finite Difference discretizations of two problems with various meshsizes varying up to $1025{\times}1024$. CRAY-T3E with 128 nodes was used. MPI library was used for interprocess communications, The results show that Multi-Color Block SOR is scalabl and gives the best performances.

  • PDF

Numerical heat transfer analysis methodology for multiple materials with different heat transfer coefficient in unstructured grid for development of heat transfer analysis program for 3 dimensional structure of building (건물의 3차원 구조체에 대한 전열해석 프로그램 개발 중 서로 다른 열전도율을 갖는 복합재질 3차원 구조의 비정렬 격자에 대한 전산해석 방법)

  • Lee, Juhee;Jang, Jinwoo;Lee, Hyeonkyun;Lee, Youngjun;Lee, Kyusung
    • KIEAE Journal
    • /
    • v.16 no.1
    • /
    • pp.81-87
    • /
    • 2016
  • Purpose: Heat transfers phenomena are described by the second order partial differential equation and its boundary conditions. In a three-dimensional structure of a building, the heat transfer phenomena generally include more than one material, and thus, become complicate. The analytic solutions are useful to understand heat transfer phenomena, but they can hardly be applied in engineering or design problems. Engineers and designers have generally been forced to use numerical methods providing reliable results. Finite volume methods with the unstructured grid system is only the suitable means of the analysis for the complex and arbitrary domains. Method: To obtain an numerical solution, a discretization method, which approximates the differential equations, and the interpolation methods for temperature and heat flux between two or more materials are required. The discretization methods are applied to small domains in space and time, and these numerical solutions form the descretized equations provide approximated solutions in both space and time. The accuracy of numerical solutions is dependent on the quality of discretizations and size of cells used. The higher accuracy, the higher numerical resources are required. The balance between the accuracy and difficulty of the numerical methods is critical for the success of the numerical analysis. A simple and easy interpolation methods among multiple materials are developed. The linear equations are solved with the BiCGSTAB being a effective matrix solver. Result: This study provides an overview of discretization methods, boundary interface, and matrix solver for the 3-dimensional numerical heat transfer including two materials.

PREDICTION OF SEPARATION TRAJECTORY FOR TSTO LAUNCH VEHICLE USING DATABASE BASED ON STEADY STATE ANALYSIS (정상 해석 기반의 데이터베이스를 이용한 TST 비행체의 분리 궤도 예측)

  • Jo, J.H.;Ahn, S.J.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.19 no.2
    • /
    • pp.86-92
    • /
    • 2014
  • In this paper, prediction of separation trajectory for Two-stage-To-Orbit space launch vehicle has been numerically simulated by using an aerodynamic database based on steady state analysis. Aerodynamic database were obtained for matrix of longitudinal and vertical positions. The steady flow simulations around the launch vehicle have been made by using a 3-D RANS flow solver based on unstructured meshes. For this purpose, a vertex-centered finite-volume method was adopted to discretize inviscid and viscous fluxes. Roe's finite difference splitting was utilized to discretize the inviscid fluxes, and the viscous fluxes were computed based on central differencing. To validate this flow solver, calculations were made for the wind-tunnel experiment model of the LGBB TSTO vehicle configuration on steady state conditions. Aerodynamic database was constructed by using flow simulations based on test matrix from the wind-tunnel experiment. ANN(Artificial Neural Network) was applied to construct interpolation function among aerodynamic variables. Separation trajectory for TSTO launch vehicle was predicted from 6-DOF equation of motion based on the interpolated function. The result of present separation trajectory calculation was compared with the trajectory using experimental database. The predicted results for the separation trajectory shows fair agreement with reference[4] solution.

Development of An Unsteady Navier-Stokes Solver using Implicit Dual Time Stepping Method and DADI Scheme (내재적 이중시간 전진기법과 DADI 기법을 이용한 비정상 Navier-Stokes 코드개발)

  • Lee, Eun-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.9
    • /
    • pp.34-40
    • /
    • 2005
  • In present study, a two dimensional unsteady Navier-Stokes solver has been developed using the Diagonalized ADI (DADI) method and implicit dual time stepping method. The jacobian matrices in steady state Navier-Stokes equations are introduced from inviscid flux terms. The implicit treatment of artificial dissipation terms results in a block penta-diagonal matrix system and it becomes a scalar penta-diagonal matrix by diagonalization. In steady state equations about fictitious time, a new residual including a real time derivative term is introduced. From a converged solution about fictitious time, a real time unsteady solution can be obtained, which is called 'implicit dual time stepping method'. For code validation, an oscillating flat plate, a regular Karman vortices past a circular cylinder and shock buffeting around a bicircular airfoil problems are numerically solved. And they are compared with a theoretical solution, experiments and other researcher's computations.