184 International Journal of Control, Automation, and Systems Vol. 1, No. 2, June 2003

Control System Synthesis Using BMI:
Control Synthesis Applications

Tae-Jin Chung, Hak-Joon Oh, and Chan-Soo Chung

Abstract: Biaffine Matrix Inequality (BMI) is known to provide the most general framework in
control synthesis, but problems involving BMI's are very difficult to solve because nonconvex
optimization should be solved. In the previous paper, we proposed a new solver for problems
involving BMI's using Evolutionary Algorithms (EA). In this paper, we solve several control
synthesis examples such as Reduced-order control, Simultaneous stabilization, Multi-objective
control, H optimal control, Maxed H,/H_ control design, and Robust H,, control. Each of
these problems is formulated as the standard BMI form, and solved by the proposed algorithm.
The performance in each case is compared with those of conventional methods.

Keywords: Biaffine matrix inequalities, nonconvex optimization, evolutionary algorithm,

1. INTRODUCTION

As mentioned in the previous paper [8] BMI pro-
vides more general frameworks in control synthesis
than LMI. However, the complexity due to its non-
convex characteristic makes it hard to apply BMI's to
control synthesis applications. Even though several
algorithms have been proposed, their performances
depend on how to relax given BMI problems. In addi-
tion, their computational time would increase signifi-
cantly since they repeat relaxing BMI's to LMI's and
solving Semidefinite Programming (SDP). In the pre-
vious paper [8], we proposed a new approach that util-
izes the powerful evolution mechanism of Evolution-
ary Algorithm (EA) for BMI problems. In addition, a
problem occured when applying EA to BMI was
pointed out, and an efficient method was proposed to
overcome this problem. This method is to evolve ma-
trix variables instead of evolving elements of them.
Evolution of matrices was performed by evolving
their eigenvalues and eigenvectors separately and
combining them into matrices again. This new method
can solve several numerical examples and the per-
formances could be better than those of Brand and Cut
(B&C) algorithm [8].

In this paper, we will solve several control synthesis
examples using the proposed algorithm. The examples
are such as Reduced-order control, Simultaneous sta-
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bilization, Multi-objective control, H_ optimal con-
trol, Mixed H,/H, control design, and Robust
H_ control. These control problems are actively stud-
ied in control society, and some of them are known as
difficult to solve with conventional control algorithms

The reduced-order control has an additional con-
straint on the order of the controller in addition to the
performance constraints. The conventional approaches
to this problem are focused on the LMI's with addi-
tional rank conditions [11,17], or coupled two LMI's
[12]. In [12], the - XY centering algorithm for dual
LMI problems was used. In this algorithm, X andY
matrix variables (referred R and S in other papers) re-
lated to the Lyapunov inequalities are coupled with
each other by X =Y 'and they are iteratively up-
dated until the condition XY =/ is satisfied. Ghaouli,
et. al. [11] proposed the complementary linearization
algorithm where the rank constraint is linearized
asTr(XY). Tanaka et. al. [17] characterized fixed-
order (or reduced-order) controllers based on the LMI
approach, and provided necessary and sufficient con-
ditions for the existence of reduced-order controllers.

The simultaneous stabilization problem is to design a
single controller stabilizing multiple plants, which is
known as NP -hard. In [7], an iterative LMI (ILMI)
method is proposed and an example is solved. This ex-
ample is also solved in [14] using the nonlinear pro-
gramming approach, where SDP is solved iteratively.
An interesting result is proposed in [1], where the de-
sirable pole regions are formulated and a nonlinear con-
strained optimization technique is applied to place all
the system poles into the specified regions.

The H_ optimal control has been the most famous
design framework in control synthesis since the late of
1970's. One of the recent approaches to this problem
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is to use LMI's [6,9,16]. Since BMI is the general
form of LMI, all of approaches in these papers could
be an example of various applications of BMI.

The multi-objective control is to design a controller
satisfying several design specifications. It is often de-
sirable to design a controller stabilizing a plant as well
as limiting control inputs or satisfying time transient
response of output, etc. Several LMI's conditions for
multi-objectives are presented in [13] and [10]. How-
ever, they have a conservative assumption which
places all constraints on a common Lyapunov matrix.

The mixed H, / H,, control is a special example of
multi-objective control. The desirable controller
should satisfy the H, constraint in one channel and
H  constraint in the other channel. This problem is
very useful in designing controllers with limited con-
trol input. A conventional LMI approach to solve this
problem assumes a common Lyapunov matrix as
same way in the multi-objective control case.

The robust H control arises when there exist un-
certainties in plant models. When these uncertainties
are expressed as a structured one, Linear Fractional
Transformation (LFT) represents the uncertain system,
and existing robust control algorithm could be applied.
We will solve this problem in the BMI framework.

In this paper, the problems mentioned above are
solved in the BMI framework and the performances
are compared with those of the conventional algo-
rithms. This paper is organized as follows. In Section
2, the newly proposed algorithm is reviewed briefly
and each of control problems is solved in Section 3. In
each cases the performances and the advantages are
discussed. Finally, we conclude in Section 4.

2. ANEW APROACH TO BMI PROBLEM

The proposed approach [8] for BMI problems is to
utilize the efficient evolutionary algorithm. An effi-
cient method is also proposed to resolve the difficulty
occurred in the matrix optimization using evolutionary
algorithm. This is to evolve matrix variables by evolv-
ing its eigenvalues and evolving rotational angles for
eigenvectors. A matrix could be evolved only in the
positive definite conic space by restricting eigenvalues
to positive real space. Given's rotation matrices, ob-
tained from evolved rotation angles, rotate eigenvec-
tors and produce another orthonormal eigenvectors.
This new method can solve BMI problems more effi-
ciently than conventional evolutionary algorithms.
Algorithm 1 summarizes the proposed method.

in Step 16, we solve Alternating SDP with the cur-
rent best individual as the initial point to accelerate
searching mechanism, and the resulting local informa-
tion is used for the next evolution. Since computa-
tional time of Alternating SDP algorithm is longer
then that of evolution, it is applied every 1000 genrea-

Algorithm 1 Algorithm of the Proposed Approach
ct=0

: Randomly select orthonormal eigenvectors M
: Initialize P = {(xl,oq,ﬁl )5+ (%5035 6, )}
: FeasbleNO =0.
: Evaluate f (P(O))
: while (FeasbleNO < N) do
D+
: Generate P\ by one step of EA. ?
9: f})(etgt = max; f(E(’) )z,i =10

10: if (beetzt is feasible) t

11: FeasbleNO + +;

12: else

13: Feasble = 0;

14: end if

15:if (%1000 == 0) then

16: Solve Alternating SDP, ¥

17: Insert the solution to P**)

18: end if

19: end while

1) x; consist of variables for controller, rotational
angles, and eigenvalues.

2) Mutation, Crossover, and Selection operators
are applied. After evolving rotational angles,
Given's rotation matrix is produced and N or-
thonormal eigenvectors are rotated.

3) This accelerates convergency rate of the algo-
rithm.

Note) More details are in [8].

tions. Normally, about 20 Alternating SDPs are solved
for most BMI problems.

This algorithm is implemented in C++ using a
mathematical library Meschanch and a random num-
ber generation library Ranlib, and its is compiled in
Digital Alpha Station (CPU Alpha 21664 - 500MHz,
512MB Memory, DIGITAL UNIX 4.0).

0~ AN AN —
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3. NUMERICAL EXAMPLE

In this section, the proposed approach is apptied to
several control synthesis problems to verify its per-
formances.

3.1. Static output feedback controller design

The static output feedback design problem is to de-
sign a constant feedback gain stabilizing a system. It
is known to be NP -hard [4]. The following system is
cited from [3]. The goal is to design a stabilizing static
output feedback controller with the maximum decay
rate of closed loop system.

(D
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This problem is equivalently expressed as the prob-
lem to find a scalar K, a symmetric positive definite
matrix P, and the maximum decay rate such that the
following BMI's are feasible.

AL (K)P + PA, (k) +2aP <0
P>0

@

where 4,,(K)= A+ BKC.

In [3], they used a BMI algorithm based on Bend-
ers decomposition to solve this problem. Their initial
bounds for K and & were between -1.0 and -10.0, and
between -0.1 and 1.0, respectively. They found a op-
timal solution K =-9.4277 with closed loop poles at
-7.3196, -1.0541+0.5600j in 24 iterations (the maxi-
mum decay rate was not reported). According to their
analysis of the algorithm, it required to solve 215 SDP
problems.

The proposed algorithm found a controller
K=-99170 with the maximized decay rate
a =0.6563 in about 20 seconds. Moreover, this
« can be obtained without bisection algorithm since it
is just one variable in the BMI framework. The result-
ing closed loop poles were -7.8678, -1.0516+0.5600.
Comparing ITAE (Integral of time multiplied by the
absolute value of error) performance indices of the
two closed loop systems, we can notice that the pro-
posed algorithm improved the performance by 4.7%
than that of [3].

3.2 Reduced-order controller design

The reduced-order controller design is one of the
most actively studied problems in control synthesis,
since it is more challenging than full-order controller
design and more preferable for practical purpose

Table 1. Controllers for mass-spring-damper system.

Order Poles
4 -0.0290+1.7475j
-0.1316+0.9535j
-0.2018+0.3176j
-0.4106%0.4194;
-0.4385+1.2891j
3 -1.1448
-0.0172+1.7418;
-0.0269+0.9344;
-0.0315+0.2969j
-0.341940.8050j
2 -2.0871
-0.2024
-0.0101+0.0928;j
-0.0135+1.7362j
-0.0173+0.1775j
1 -4.3884
-0.0019+0.3703j
-0.0026+0.8989j
-0.0155+1.7477]

Decay Rate
-0.0290

-0.0172

-0.0101

-0.0019

Root Locus for the system with a static controller

41 0.08 -0.06 -0.04 -0.02 o}
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Fig. 1. Root Locus of the closed system ( N, =0).

Root Locus for the system with the the 1st order controller
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Fig. 2. Root Locus of the closed system ( N, =1).

Root Locus for the system with the 2nd arder controller

3
2r N .
*
ED_ ......................... -—*——-O .........................................

b . L . L . L . . . .
04 D35 03 HL2B5 02 015 01 005 0 005 01
Real

Fig. 3. Root Locus of the closed system( N, =2).
[12,15,17]. As we mentioned earlier, this problem is

not formulated as LMI's only. In most cases applying
LMTI's for this problem, they use a couple of LMI's
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Root Locus for the system with the 3rd order controller
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Fig. 4. Root Locus of the closed system( N, =3 ).

Raoot Locus for the system with the 4th order contraller
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Fig. 5. Root Locus of the closed system (N, =4). -

that are strongly coupled to each other. In {11], a cone
complementary linearization algorithm was used to
solve the coupled LMI's. In this subsection, we will
design the several reduced-order controllers using the
Algorithm 1. One of advantages in Algorithm 1 is that
there is no conservatism due to linearization, because
it solves BMI problems directly (without any modifi-
cation). The plant to be stabilized is the 3-mass-
spring-damper system.

The external disturbance @ is ignored to simplify
the problem and the design constraint is set to stabili-
zation of the closed loop system. The output feedback
controller's orders are set to 4th( N, =4), 3rd( N, =3),
2nd( N, =2), and 1st( N, =1). Using the Algorithm 1,
we can design reduced-order controllers for all cases.
However, as the controller's order decreases, the poles
of the closed loop system approach into the neighbor-
hood of the imaginary axis. Table 1 shows the poles
of the closed-loop systems with the designed control-
lers.

All poles are in the left-hand side in the complex
plane, but the maximum decay are decreased as the

Table 2. Simultaneous controller design : Case 1.

a Feedback [Poles of the Closed loop System|
Gain For A (s) For B (s)
-1.0 | -2.5838 -3.6074 -0.5+0.5778;
-0.3926
-1.9 | -2.0360 -3.9668 -0.9636
-0.0332 -0.9374

controller's order decreases. Fig. 1, 2, 3, 4, and 5 show
the root locus of the systems with each controllers
including static output feedback case.

3.3. Simultaneous stabilization

The simultaneous stabilization is one of difficult
control synthesis problems, and also known as NP -
hard [1,5]. The problem is to design a single controller
stabilizing multiple plants.

Consider the following arbitrary plants

x;(8) = Ax; (1) + Byu; (1)
Yi(@) = Cyx; (1)

for i=1,--,m.

The simultaneous stabilizing controller must stabi-
lize all plants. In the conventional LMI method, all
Lyapunov matricesPl-are set to a common P ,which
produces conservatism. However, in the BMI frame-
work, the problem is expressed as follows.

3)

(4; + BKC) P+ B(4; + BKC))+2al <0

4)
F>0
In [14], a simultaneous controller was designed for
following simple two plants.

1

"oy @

R(s)=—"—, Py(s)
(s

+2)2’

It is known that there exists a static output feedback
controller if a>-2. Using the nonlinear program-
ming approach, Lee [14] designed controller for
a=15.0,05,-1.0,-1.5, -1.9 and the designed feedback
gains were -2.0718, -2.9735, -2.7413, -2.0027,
-2.0064, respectively. We designed controller for the
same plants with a =-1.0, -1.9 using the Algorithm 1,
and the results are shown in Table 2.

It can be seen that the results are similar to those of
[14]. Since there is no results on the CPU time in [14],
we cannot compare the computational efficiency of
two algorithms.

3.4. Simultaneous stabilization with pole placement

In this example, we will design another interesting
control design problem, that is, simultaneous stabiliza-
tion of four plants that places the closed loop poles in
the described region. Consider the following four
plants [1].
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s+4 2(s+2
Rs) =22 p(s)=-2812)
s+2 s+3
s+2 s+3 ©)
B(s) =t Py(s) = o
s°=3s+4 s°—2s+1

We would like to design a controller stabilizing
these four plants simultaneously with the following
first order controller.

K(S) _ as+ap _ I:kl k2j| (7)

s+ a3 k3 k4

We first design a stabilizing controller for those
plants in similar ways in the previous subsection. The
design controller is

5.360s +381.194
K(s)= (8)
s+71.112

and the poles of the closed-loop system are shown in
Fig. 6. In this figure, it can be seen that all poles are in
the left-half plane, but some poles are very close to the
imaginary axis, which gives poorly damped mode to
the system. Therefore, it is very desirable to place the
poles in some desirable region. This can be achieved
by adding additional constraints in the design step,
which are pole placement constraints. Let's assume
that the desirable region for the system is inside of the
parabola or inside of the shaded triangular. These con-
straints can be expressed as nonlinear inequalities [1]
or LMI's [16].

In [1], the authors used nonlinear optimization ap-
proaches to design a controller satisfying the nonlin-
ear pole placement constraint in the characteristic
polynomials. Their controller was

13.525+27.05
K et iddd 9
s,D,l(s) $+2.39 ( )

and the resulting poles of the system was placed in the
parabola as in Fig. 7.

Even though all poles are inside of the desired pa-
rabola, some are outside of the triangular region (it
does not mean that the region of tritangular represents
better characteristics of the system). We will design a
controller producing more damping to the system,
whose poles are inside of the triangular region.

The triangular region in the Fig. 6 can be expressed
as intersection of a conic section with inner angle

0.3303(rad) and a vertical strip between -2.0 and -50.0.

With these constraint, the closed-loop system will
have at least -2.0 as the maximum decay rate and at
least 0.9864 as the minimum damping ratio.

Poles of Closed loop systems (by Proposed algorithm with Stabilizing Conslraints)
T T T T T

10
ol
ol
4
L)
sk
g of 21
2}
4 8|
o
aF
o 1 . . . .
-60 -50 -40 -30 -20 -10 0

Real

Fig. 6. Poles of the closed-loop systems (i: poles for

i th plants).
Poles of Closed loop systems (by Proposed algorithm with Stabilizing Constraints)
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Fig. 7. Poles of the closed-loop systems by nonlinear
optimization approach (i : poles for i th
plants).

When formulating these constraints into BMI's form,
we have eight Lyapunov matrices, In the conventional
LMI approaches, all of these Lyapunov matrices are
set to be common. But, we can use eight different
Lyapunov matrices for different constraints, so that
we can avoid conservatism of LMI approaches. We
have four variables for the controller, 36 variables for
eight Lyapunov matrices, and the dimension of the
involving matrices are 70.

Using the proposed algorithm, we can design a con-
troller satisfying all of the constraints. The designed
controller is

26.5795 +1197.4
K. ro(s)= 10
«0.2(5) s +43.799 (10)

and the resulting poles are shown in Fig. 8.
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Poles of Closed loop systems (by Proposed algorithm with Stabilizatzing and Pole placement Constraints)
10 T T T T T
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Fig. 8. Poles of the closed-loop systems by the pro-
posed algorithm (i : poles for i th plants).

3.5. Structured controller design

The structured controller is to design a controller
with a special structure. This problem has been known
to be difficult to solve, since the special structure of a
controller is difficult to be formulated in the existing
controller design tools. When designing decentralized
controller, the structure of a controller will be speci-
fied according to the structure of the network, or re-
duction of redundant sensors or actuators. In this ex-
ample, we will design a couple of simple structured
controllers

Let's consider a simplest PID controller. The design
of a PID controller can be considered as a structured
control design problem, since the structure of the con-
troller 1s specified. Consider a plant

P(s) = _08 (11)
5(0.5s +1)
and the designed controller should be of the form

Using the Algorithm 1, we can find a PID gain such
as 59.854, 3.5578, and 99.92, which stabilizes the
plant.

As an another interesting example, we consider the
3-mass-spring-damper system again. However, at this
time, as assume that the controller has a specified
structure such as

k0 0|k
0 & 0|k

K structured = 0 0 kS k6 ( 1 3)
k7 kS k 9 kl 0

Table 3. H_ controller design #1.

Order
2 -5.2692

-18.771

-46.779

-1.61724+3.4562j

1 -5.2698

-18.700

-1.6199+3.4574j
This specific controller is easily formulated as BMI

form and the proposed algorithm yields the following

stabilizing controller.

Poles Y
9.7849

10.4377

—14.625 0 0 —0.2868
0 —0.2863 0 0.0499
Kstructured = 0 0 —0.5415 | —0.0963

~0.5415 -0.0963 0.1411 | 0.6104

(14)

3.6. H_ optimal controller design #1

The H,, optimal controller design has been the
most popular design framework in controller design
since it was proposed in the late of 1970's. One of the
recent approaches to this problem is to use LMI
framework [6,9,13,16]. Since BMI is a general form
of LMI, all the controllers designed using LMI's can
be also designed using BMI's. In this and the next ex-
amples, we will design a couple of H_, optimal con-
trollers using the Algorithm 1.

The H optimal control problem is formulated as

A'P+pP4a, PB, CI
B'p —y1 DI |<0, P>0 (15
C D

c c

_}/]

where y is the Hnorm. The above matrix inequal-
ity is also a BMI form.
Consider the following unstable plant.

0.0 100 2.0 1.0 0.0
x=|-10 10 00 |x+|00{w+|1.0 |u
00 20 -50 1.0 0.0

Yy=x +2.0w

(16)

The H, controller of order 2 can be designed us-
ing conventional method [2,19], or in the LMI frame-
work. Using these conventional methods, we could
get an optimal y =9.5124.

Using the Algorithm 1, we can obtain a similar con-
troller, but y is slightly increased. However, we can
also design a reduced-order H controller with very
similar ¥ . Recall that the reduced-order H_ control
problem can not be formulated using conventional
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H theories. The designed controllers are shown in
(17) and (18) and Table 3 shows results of this exam-
ple.

-24.785 11325 | 16.990
Hy . =|-3.7160 —-48.640 | -24.473 17
-1.0615 1.9644 | 3.3708

-26.602 | -7.6128
LHy = (18)

24,511 | 3.3932

3.7. H,optimal controller design #2
In this example, another H_, optimal controller is
designed to compare the performance of the proposed
algorithm.
A system [18] is given as
-0.0366 0.0271 0.0188
0.0482 -1.0100 0.0024
0.1000 0.3680 -0.7070 1.4200

0.0000  0.0000 1.0000  0.0000

(1.0 0.0 0.0 0.0] 0.4420 0.1760
00 1.0 0.0 0.0 3.5400 -7.5900
B = By

-5.5200 4.4900

00 0.0 1.0 00
100 0.0 0.0 L[.0] 0.0000  0.0000
0.0 00

1.0 0.0 00 00}
C;=/00 10 00 00[,D,=1.0 0.0
100 00 0.0 0.0] 0.0 1.0

C,=[0.0 1.0 0.0 0.0], D, =D, =Dy =0.0

-0.4560
-4.0200

Here, we are looking for a static output feedback
K so that the closed-loop H_ norm is less than a pre-
scribed value. In [18], the min/max algorithm was

Output Response
T

States

: L \ L
0 5 10 15 20 25 30
Time (sec)

Fig. 9. Output response due to impulse disturbances
(solid: y; , Dotted: y, , Dash: y5).

used to design a controller K =[1.06, 1.44]T , and

the Hnorm was 12.4751.

We solve the same control problem using the Algo-
rithm 1. The obtained controller is
K= [1.6198, 6.0181]T after predefining H_, perform-
ance bound as 10.25. With the designed controller, the
actual H_, performance was 10.0844, which is
slightly improved. Fig. 9 shows the output response
when impulse disturbance are induced. All of the re-
sponses converge to zero in about 25 seconds.

3.8. Mixed H, / H , controller design

The mixed H,/H, control problem is to design a
stabilizing controller satisfying H, performance in
one channel and H_ performance in the other chan-
nel of the closed-loop system. Although it is difficult
to formulate this control problem algebraically, LMI
framework allows designers to design a mixed
H, /Hcontroller by sharing a common Lyapunov
function [13,16]. In this example, we design a static
output feedback H,/H, controller for the following
plant [18].

In [18], the Method of Centers algorithm was used
to find a controller which is
K= [1.78, 5.26, —9.64]T , and the performance was

T.,»|=14.7106 and ﬂTmel‘z?a.O . Using the pro-
posed algorithm, we tind a similar controller, after
setting H, performance bound to 3.0 and H, per-
formance bound to 15.0,

-0.825 0.089 0.0 0.935 0.519
x=|0.1870 0.430 0.0|x+|0.384 |w+|0.831 |u

0.0000 0.0 1.0 1.0 1.0
-0.946 0324 -1.0 -1.0
Zy = X+ u
0.019 0.331 -0.465 1.0
0.167 0.487 1.0 1.0
Zy = X+ u
0.179 0.435 -0.116 -1.0

K =[1.7920, 52929, -9.7600]

and the performance is T22w|| =14.7726 and
Tzww||=2.982 Fig. 10 and 11 show the output re-
sponse of each channels when impulse disturbance is

induced to the system.

3.9. Robust H, controller design

As the last numerical example, we design a robust
controller. The robust H_ control problem is to de-
sign a stabilizing controller for a uncertain system
(19) and to satisfy H performance.
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T

i1 |[4 B, B]|B ¢y
-1

z|=| |G Dy, Dy |+ Dy |AI-DyA) | DL,

C D, D T

Y y Fyo S hp Dy,

(19)
with uncertainty A .

To illustrate the design example, we choose a two-
mass-spring system. The nominal parameters are set
to  myq,myg,kqy,b =0 and the actual uncertain parame-
ters are expressed as

k:k0(1+o-k5k)
n =m10(1+0'l(51)
my = may(1+026,)

Consider
o, 0 0
A= 0 51 0
0 0 o

where |6;|< &}, |6|<&,and |6,|<S,. Then, this
uncertain system is described as the following LFT
(Linear Fractional Transformation) form, where
where , , and . Then, this uncertain system is described
as the following LFT (Linear Fractional Transforma-
tion) form, where

A | Bp B, B,
Cq qu qu un (20)
Cz sz Dza) Dzu
Cy Dyp Dyw Dyu
stands for
[0 0 10 0 0 0 0 0
0 0 0 0 0 0 0 0
_ ko k_O 0 0 kg -0, 0 0 L
myy My myo my
kK _ ko 00 oiko 0 -o, 1
M0 Mo o My
-1 1 00 0 0 0 0 0
_ ko k_o 0 0 O-k_ko - 0 0 —
My Mo myo my
ko koo Zh o 5, Lo
Mg My n myg
0 1 0 0 0 0 0 0 0
| O 1 00 0 0 0 0 0 |

191

Qutput Response (H2 channel)

s

-8

-8

: L L L L
0 5 10 15 20 25 30
Time (sec)

Fig. 10. Output response at H, channel due to im-
pulse disturbance (solid: z, ;, dotted: z; ; ).

Output Response (H_ channel}

-6

. . L . )
0 5 10 15 20 25 30
Time (sec)

Fig. 11. Output response at channel due to impulse
disturbance (solid:, dotted:).
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Fig. 12. Feed back input. (solid: nominal, dotted: per-
turbed).
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Output Response
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Fig. 13. Output responses (solid: nominal, dotted: per-
turbed).

We  set parameters of the plant as
kg =1.0, b =0 and assume that two masses and spring

constant are varying to 10%, such that
o, =1.0,0y=1.0,and o, =0.1.

Using the Algorithm 1, we designed 4th order ro-
bust controller (21), and its H_ performance was
5.1586. Fig. 12 and 13 show the feedback inputs and the
output responses when impulse disturbance is induced to
the second mass. The dotted lines in each figures stand for
feedback inputs and output responses, when the parameters
are fixed to the extreme values of the perturbation bounds.
The solid lines stand for the nominal case. In Fig. 13,
we can see that the effects of the disturbances are
regulated to zeros in about 25 seconds.

[ 4 Bk}

k= Cr | Dy

[-5.1773  5.8608 -8.6172 1.4154 | 0.5118 ]
1.1940  -3.7993 1.9284 -9.3212| 9.8969
=| 8.0043 19746 -1.4428 -2.7642 | -8.7217
-0.9366 -2.4948 3.3555 -0.8715| 2.3398
7.0940  -7.1013  9.9004 -2.3176 | 0.0000

21
4. CONCLUSION

In this paper, we solved several control synthesis
examples such as Reduced-order controller, Simulta-
neous stabilization, Multi-objective control, H_, op-
timal control, Mixed H,/H,, control design, and
Robust H, control in the BMI framework. Each of
these problems are reformulated as the standard BMI
forms, and solved by the proposed algorithm. The
newly proposed algorithm is different from other
methods by utilizing the evolutionary algorithm.
Moreover, for matrix variables, an efficient evolution
method was proposed.

The cited numerical problems are mostly attracting
engineers interest recently and some of them are
known as difficult to solve. Using the proposed algo-
rithm, all of the control problems can be solved effi-
ciently and their performances in each cases are not
less than those of the conventional algorithms. From
the computational point of view, this proposed algo-
rithm can have more potentials since it provides an
unified framework for various control problems to
designers.

REFERENCES

[11Y. Wang and K. J. Hunt, “Simultaneous stabiliza-
tion and strong simultaneous stabilization of r-
tuple plants with d stability: a constrained opti-
mization approach,” Technical report, Center of
Systems and Control, Department. of Mechanical,
University of Glasgow, 1999, CSC-99012.

[2] G. J. Balas, J. C. Doyle, K. Glover, A. Packard,
and R. Smith, u-Analysis and Synthesis Tool-
box, The Mathworks Inc., 1995.

[3] E. Beran, L. Vandenberghe, and S. Boyd, “A
gloal BMI algorithm based on the generalized
benders decomposition,” Proc. of the European
Control Conference, Brussels, Belgium, 1997.

[4] V. Blondel, and J. N. Tsitsiklis, “Hardness of
some linear control design problems,” SIAM
Journal on Control and Optimization, 35(6):
2118-2127, November 1997.

[5]1 V. Blondel and M. Gevers, “The simultaneous
stabilization question of three linear systems is
undecidable,” Mathematics of Control, Signals
and Sysetms, 6:135-145, 1994,

[6] S. Boyd, L. E. Ghaoui, E. Feron, and V.
Balakrishnan, Linear Matrix Inequalities in Sys-
tem and Control Theory, SIAM, Philadelphia,
1994,

[71Y.Y. Cas and Y. X. Sun, “Static output feedback
simultaneous stabilization: ILMI approach,” In-
ternational Journal of Control, 70(5):803-814,
1998.

[8] T. J. Chung, H. J. Oh, and C. S. Chung, “Control
sysetm synthesis using BMI: Part I - a solver for
BMI problems,” KIEE International Trans. on
SC, 11(3):14-24, 2001.

[9] P. Gahinet and P. Apkarian, “A linear matrix ine-
quality approach to control,” International Jour-
nal of Robust and Nonlinear Control, 4:421-448,
1994.

[10] L. E. Ghaoui and J. P. Folcher, “Robust multiob-
jective LMI control design for systems with
stricted perturbations,” IEEE Proc. of IFAC,
1996.

[11] L. E. Ghaouli, F. Oustry, and M. AitRami, “A
cone complementry linearization algorithm for
output feedback and related problems,” IEEE
Trans. on AC, 42(8):1171-1176, August 1997.



International Journal of Control, Automation, and Systems Vol. 1, No. 2, June 2003 193

[12] T. Iwasaki and R. E. Skelton, “The XY -algorithm
for the dual LMI problem: A new approach to
fixed-order control design,” International Jour-
nal of Control, 62(6):1257-1272, 1995.

[13] P. P. Khargoneckar and M. A. Rotea, “Mixed
control: Convex optimization approach,” IEEE
Trans. on AC, 36:824-837, July 1991.

[14] J. W. Lee, “Nonlinear programming approach to
biaffine matrix inequalities problems in multiob-
jective and structured control,” IEEE Trans. on
AC.

[15] T. E. Pare and J. P. How, “Algorithms for re-
duced order robust control,” Proc. of the CDC,
1999.

Tae-Jin Chung received the M.S. and
Ph. D. degrees in Electrical Engineer-
ing from Soongsil University in 1996
and 2001, respectively. Currently, he
joined the Space Development and
Research Center, Korea Aerospace
Industries. His interests includes BMI
optimization, Systems Engineeing.

Hak-Joon Oh received the B.S. and
M.S. degree in Electrical Engineering
from Soongsil University in 1993 and
1995, respectively. From March 1996,
he has been a student in Ph.D. course
in Soongsil University. Currently, he
jonined the Telematics Research De-
partment. His current research interests
include Double-Talk Echo Canceller ,Robust Control, Digi-
tal Signal Processing.

[16] C. Scherer, P. Gahinet, and M. Chilali, “Multiob-
jective output-feedback control via LMI optimi-
zation,” IEEE Trans. on AC, 42(7):896-911, July
1997.

[17] H. Tanaka, T. Sugie, “New characterization of
fixed-order controller based on LML Interna-
tional Journal of Control, 72(1):58-74, 1999.

[18] S. D. Yen, Mixed H,/H, Optimization: A BMI
Solution, Ph.D. Thesis, Univerisity of Maryland,
1996.

[19] K. Zhou, J. C. Doyle, and K. Glover, Robust Op-
timal Control, Prentice Hall, 1996.

Chan-Soo Chung recieved the M.S.
and Ph. D. degrees in Electrical Engi-
neering from Seoul National Univer-
sity, in 1971 and 1980 respectively.
Currently, he is a professor in Soongsil
University. His interests includes Sig-
nal Processing, System and Control,
Fault Detection.



