• Title/Summary/Keyword: matrix inequality approach

Search Result 151, Processing Time 0.026 seconds

Fuzzy control for geometrically nonlinear vibration of piezoelectric flexible plates

  • Xu, Yalan;Chen, Jianjun
    • Structural Engineering and Mechanics
    • /
    • v.43 no.2
    • /
    • pp.163-177
    • /
    • 2012
  • This paper presents a LMI(linear matrix inequality)-based fuzzy approach of modeling and active vibration control of geometrically nonlinear flexible plates with piezoelectric materials as actuators and sensors. The large-amplitude vibration characteristics and dynamic partial differential equation of a piezoelectric flexible rectangular thin plate structure are obtained by using generalized Fourier series and numerical integral. Takagi-Sugeno (T-S) fuzzy model is employed to approximate the nonlinear structural system, which combines the fuzzy inference rule with the local linear state space model. A robust fuzzy dynamic output feedback control law based on the T-S fuzzy model is designed by the parallel distributed compensation (PDC) technique, and stability analysis and disturbance rejection problems are guaranteed by LMI method. The simulation result shows that the fuzzy dynamic output feedback controller based on a two-rule T-S fuzzy model performs well, and the vibration of plate structure with geometrical nonlinearity is suppressed, which is less complex in computation and can be practically implemented.

Delay-Dependent Robust Stabilization and Non-Fragile Control of Uncertain Discrete-Time Singular Systems with State and Input Time-Varying Delays (상태와 입력에 시변 시간지연을 가지는 불확실 이산시간 특이시스템의 지연종속 강인 안정화 및 비약성 제어)

  • Kim, Jong-Hae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.2
    • /
    • pp.121-127
    • /
    • 2009
  • This paper deals with the design problem of robust stabilization and non-fragile controller for discrete-time singular systems with parameter uncertainties and time-varying delays in state and input by delay-dependent Linear Matrix Inequality (LMI) approach. A new delay-dependent bounded real lemma for singular systems with time-varying delays is derived. Robust stabilization and robust non-fragile state feedback control laws are proposed, which guarantees that the resultant closed-loop system is regular, causal and stable in spite of time-varying delays, parameter uncertainties, and controller gain variations. A numerical example is given to show the validity of the design method.

A Frozen Time Receding Horizon Control for a Linear Discrete Time-Varying System (선형 이산 시변시스템을 위한 고정시간 이동구간 제어)

  • Oh, Myung-Hwan;Oh, Jun-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.2
    • /
    • pp.140-144
    • /
    • 2010
  • In the case of a linear time-varying system, it is difficult to apply the conventional stability conditions of RHC (Receding Horizon Control) to real physical systems because of computational complexity comes from time-varying system and backward Riccati equation. Therefore, in this study, a frozen time RHC for a linear discrete time-varying system is proposed. Since the proposed control law is obtained by time-invariant Riccati equation solved by forward iterations at each control time, its stability can be ensured by matrix inequality condition and the stability condition based on horizon for a time-invariant system, and they can be applied to real physical systems effectively in comparison with the conventional RHC.

Delay-dependent Robust $H_{\infty}$ Filtering for Uncertain Descriptor Systems with Time-varying Delay (시변 시간지연을 가지는 불확실 특이시스템의 지연 종속 강인 $H_{\infty}$ 필터링)

  • Kim, Jong-Hae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1796-1801
    • /
    • 2009
  • This paper is concerned with the problem of delay-dependent robust $H_{\infty}$ filtering for uncertain descriptor systems with time-varying delay. The considering uncertainty is convex compact set of polytoic type. The purpose is the design of a linear filter such that the resulting filtering error descriptor system is regular, impulse-free, and asymptotically stable with $H_{\infty}$ norm bound. By establishing a finite sum inequality based on quadratic terms, a new delay-dependent bounded real lemma (BRL) for delayed descriptor systems is derived. Based on the derived BRL, a robust $H_{\infty}$ filter is designed in terms of linear matrix inequaltity (LMI). Numerical examples are given to illustrate the effectiveness of the proposed method.

Design of Robust Guaranteed Cost State Feedback Controller for Uncertain Discrete-time Singular Systems using LMI (선형행렬부등식을 이용한 불확실성 이산시간 특이시스템의 강인 보장비용 상태궤환 제어기 설계)

  • Kim, Jong-Hae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1429-1433
    • /
    • 2008
  • In this paper, we consider the design method of robust guaranteed cost controller for discrete-time singular systems with norm-bounded time-varying parameter uncertainty. In order to get the optimum(minimum) value of guaranteed cost, an optimization problem is given by linear matrix inequality (LMI) approach. The sufficient condition for the existence of controller and the upper bound of guaranteed cost function are proposed in terms of strict LMIs without decompositions of system matrices. Numerical examples are provided to show the validity of the presented method.

H State Estimation of Static Delayed Neural Networks with Non-fragile Sampled-data Control (비결함 샘플 데이타 제어를 가지는 정적 지연 뉴럴 네트웍의 강인 상태추정)

  • Liu, Yajuan;Lee, Sangmoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.171-178
    • /
    • 2017
  • This paper studies the state estimation problem for static neural networks with time-varying delay. Unlike other studies, the controller scheme, which involves time-varying sampling and uncertainties, is first employed to design the state estimator for delayed static neural networks. Based on Lyapunov functional approach and linear matrix inequality technique, the non-fragile sampled-data estimator is designed such that the resulting estimation error system is globally asymptotically stable with $H_{\infty}$ performance. Finally, the effectiveness of the developed results is demonstrated by a numerical example.

Robust observer-based $H_{\infty}$ control for singular systems (특이시스템의 강인 관측기 기반 $H_{\infty}$ 제어)

  • Kim, Jong-Hae
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.7-9
    • /
    • 2004
  • This paper provides an observer-based $H_{\infty}$ controller design method for singular systems with and without time-varying delay by just one LMI condition. The sufficient condition for the existence of controller and the controller design method are presented by perfect LMI (linear matrix inequality) approach. The design procedure involves solving an LMI. The observer-based $H_{\infty}$ controller in the existing results can be constructed from the coupled two or more conditions while the proposed controller design method can be obtained from an LMI condition, which can be solved efficiently by convex optimization. Since the obtained condition can be expressed as an LMI form, all variables including feedback gain and observer gain can be calculated simultaneously by Schur complement and changes of variables. An example is given to illustrate the results.

  • PDF

Robust H$\infty$ Filtering for discrete-Time Polytopic Uncertain Systems with Multiple Time Delays

  • Kim, Jong-Hae;Park, Hong-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.34.3-34
    • /
    • 2001
  • The design method of H$\infty$ filter for discrete-time uncertain linear systems with multiple state delays is investigated. The uncertain parameters are assumed to be unknown but belonging to known convex compact set of polytope type less conservative than norm bounded parameter uncertainty. The modified H$\infty$ performance measure is introduced to consider the initial states values which affect the performance of filter. The objective is to design a stable H$\infty$ filter guaranteeing asymptotic stability of filtering error dynamics and minimizing H$\infty$ norm bound. The sufficient condition for the existence of filter and the filter design method are established by LMI (linear matrix inequality) approach.

  • PDF

The nonlinear fuzzy intelligent theory for high-bypass-ratio two-spool unmixed-flow jet engines

  • C.C. Hung;T. Nguyen
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.4
    • /
    • pp.369-391
    • /
    • 2023
  • In our research we have offered a solid solution for aeronautical analysis. which can guarantee the asymptotic stability of coupled nonlinear facilities. According to the theoretical solutions and methods presented, the engine of this aircraft is a small high-bypass turbofan engine. using the non-linear aero-motor control approach and this paper focuses on the power management function of the aero-motor control system. These include static controls and transient controls. A mathematical model of the high-bypass-ratio two-spool unmixed-flow aeroengine was developed through a set of nonlinear dynamic equations verified by experimental data. A single actuator using the displacement method is designed to maintain a certain level of thrust under steady-state conditions. and maintains repeatable performance during transient operation from the requested thrust phase to the next. A single controller can compensate for the effects of noise and harmonic noise at many performance points. And the dynamic performance of a single controller is satisfactory during the transient. for fairness Numerical and computer experiments are described in the perfection of the methods we offer in research.

AN LMI APPROACH TO AUTOMATIC LOOP-SHAPING OF QFT CONTROLLERS

  • Bokharaie, Vaheed S.;Khaki-Sedigh, Ali
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.433-437
    • /
    • 2003
  • Quantitative Feedback Theory (QFT) is one of effective methods of robust controller design. In QFT design we can considers the phase information of the perturbed plant so it is less conservative than $H_{\infty}$ and ${\mu}$-synthesis methods and as be shown, it is more transparent than the sensitivity reduction methods mentioned . In this paper we want to overcome the major drawback of QFT method which is lack of an automatic method for loop-shaping step of the method so we focus on the following problem: Given a nominal plant and QFT bounds, synthesize a controller that achieves closed-loop stability and satisfies the QFT boundaries. The usual approach to this problem involves loop-shaping in the frequency domain by manipulating the poles and zeros of the nominal loop transfer function. This process now aided by recently developed computer aided design tools proceeds by trial and error and its success often depends heavily on the experience of the loop-shaper. Thus for the novice and First time QFT user, there is a genuine need for an automatic loop-shaping tool to generate a first-cut solution. Clearly such an automatic process must involve some sort of optimization, and while recent results on convex optimization have found fruitful applications in other areas of control theory we have tried to use LMI theory for automating the loop-shaping step of QFT design.

  • PDF