References
- I. Varga, G. Elek, H. Zak, On the brain-state-in-a convex-domain neural models, Neural Netw., vol. 9, no. 7, pp. 1173-1184, 1996. https://doi.org/10.1016/0893-6080(96)00028-7
- Y. Xia, An extended projection neural network for constrained optimization, Neural Comput., vol. 16, no. 4, pp. 863-883, 2004. https://doi.org/10.1162/089976604322860730
- C.-D. Zheng, H. Zhang, and Z. Wang, Delay-dependent globally exponential stability criteria for static neural networks: An LMI approach, IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 7, pp. 605-609, 2009. https://doi.org/10.1109/TCSII.2009.2023278
- B. Du, J. Lam, Stability analysis of static recurrent neural networks using delay-partitioning and projection, Neural Netw., vol. 22, no. 4, pp. 343-347, 2009. https://doi.org/10.1016/j.neunet.2009.03.005
- Z.-G. Wu, J. Lam, H. Su, and J. Chu, Stability and dissipativity analysis of static neural networks with time delay, IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 2, pp. 199-210, 2012. https://doi.org/10.1109/TNNLS.2011.2178563
- O.M. Kwon, M.J. Park, Ju H. Park, S.M. Lee, E.J. Cha, New and improved results on stability of static neural networks with interval time-varying delays, Appl. Math. Comput., vol. 239, pp. 346-357, 2014.
-
Q. Duan, H. Su, Z.-G. Wu,
$H_{\infty}$ state estimation of static neural networks with time-varying delay, Neuro-computing, vol. 97, pp. 16-21, 2012. -
Y. Liu, S.M. Lee, O.M. Kwon, Ju H. Park, A study on
$H_{\infty}$ state estimation of static neural networks with time-varying delays, Appl. Math. Comput., vol. 226, pp. 589-597, 2014. -
H. Huang, T. Huang, X. Chen, Guaranteed
$H_{\infty}$ performance state estimation of delayed static neural networks, IEEE Trans. Circuits Syst. Express Briefs, vol. 60, no. 6, pp. 371-375, 2013. https://doi.org/10.1109/TCSII.2013.2258258 -
H. Huang, T. Huang, X. Chen, Further results on guaranteed
$H_{\infty}$ performance state estimation of delayed static neural networks, IEEE Trans. Neural Netw. Learn. Syst., vol. 20, no. 6, pp. 1335-1341, 2015. -
M.S. Ali, R. Saravanakumar, S. Arik, Novel
$H_{\infty}$ state estimation of static neural networks with interval time-varying delays via augmented Lyapunov-Krasovskii functional, Neurocomputing, vol. 171, pp. 949-954, 2016. https://doi.org/10.1016/j.neucom.2015.07.038 - T. H. Lee, Ju H. Park, O.M. Kwon, S. M. Lee, Stochastic sample data control for state estimation of time-varying delayed neural networks, Neural Netw., vol. 46, pp. 99-108, 2013. https://doi.org/10.1016/j.neunet.2013.05.001
-
X.-H. Chang, G.-H. Yang, Nonfragile
$H_{\infty}$ filter design for T-F fuzzy systems in standard form, IEEE Trans. Ind. Electron., vol. 61, no. 7, pp. 3448-3458, 2014. https://doi.org/10.1109/TIE.2013.2278955 - Y.-Q. Wu, H. Su, R. Lu, Z.-G. Wu, Z. Shu, Passivity -based non-fragile control for Markovian-jump systems with aperiodic sampling, Systems and control, Letters, vol. 84, pp. 35-43, 2015. https://doi.org/10.1016/j.sysconle.2015.08.001
- D. Zhang, W. Cai, L. Xie, Q. -G, Wang, Non-fragile distributed filtering for T-F fuzzy systems in sensor networks, IEEE Trans. Fuzzy Syst., vol. 23, no. 5, pp. 1883-1890, 2015. https://doi.org/10.1109/TFUZZ.2014.2367101
- K. Gu, V.L. Kharitonov, J. Chen, Stability of Time Delay Systems, Birkhauser, Boston, 2003.
- P. Park, J. W. Ko, C. Jeong, Reciprocally convex approach to stability of systems with time-varying delays, Automatica, vol. 47, no. 1, pp. 235-238, 2011. https://doi.org/10.1016/j.automatica.2010.10.014
- A. Seuret, F. Gouaisbaut, Wirtinger-based integral inequality : application to time-delay systems, Automatica, vol. 49, no. 8, pp. 2860-2866, 2013. https://doi.org/10.1016/j.automatica.2013.05.030